Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 98(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36047944

RESUMO

Gut microbial communities are shaped by a myriad of extrinsic factors, including diet and the environment. Although distinct human populations consistently exhibit different gut microbiome compositions, variation in diet and environmental factors are almost always coupled, making it difficult to disentangle their relative contributions to shaping the gut microbiota. Data from discrete animal populations with similar diets can help reduce confounds. Here, we assessed the gut microbiota of free-ranging and captive rhesus macaques with at least 80% diet similarity to test the hypothesis that hosts in difference environments will have different gut microbiomes despite a shared diet. Although we found that location was a significant predictor of gut microbial composition, the magnitude of observed differences was relatively small. These patterns suggest that a shared diet may limit the typical influence of environmental microbial exposure on the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Dieta/veterinária , Humanos , Macaca mulatta , RNA Ribossômico 16S
2.
Front Oral Health ; 3: 863231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677025

RESUMO

The structure and function of epithelial cells are critical for the construction and maintenance of intact epithelial surfaces throughout the body. Beyond the mechanical barrier functions, epithelial cells have been identified as active participants in providing warning signals to the host immune and inflammatory cells and in communicating various detailed information on the noxious challenge to help drive specificity in the characteristics of the host response related to health or pathologic inflammation. Rhesus monkeys were used in these studies to evaluate the gingival transcriptome for naturally occurring disease samples (GeneChip® Rhesus Macaque Genome Array) or for ligature-induced disease (GeneChip® Rhesus Gene 1.0 ST Array) to explore up to 452 annotated genes related to epithelial cell structure and functions. Animals were distributed by age into four groups: ≤ 3 years (young), 3-7 years (adolescent), 12-16 years (adult), and 18-23 years (aged). For naturally occurring disease, adult and aged periodontitis animals were used, which comprised 34 animals (14 females and 20 males). Groups of nine animals in similar age groups were included in a ligature-induced periodontitis experiment. A buccal gingival sample from either healthy or periodontitis-affected tissues were collected, and microarray analysis performed. The overall results of this investigation suggested a substantial alteration in epithelial cell functions that occurs rapidly with disease initiation. Many of these changes were prolonged throughout disease progression and generally reflect a disruption of normal cellular functions that would presage the resulting tissue destruction and clinical disease measures. Finally, clinical resolution may not signify biological resolution and represent a continued risk for disease that may require considerations for additional biologically specific interventions to best manage further disease.

3.
J Periodontal Res ; 56(1): 34-45, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32776336

RESUMO

OBJECTIVE: We hypothesized that autophagy-related genes will be differentially expressed in periodontitis, suggesting an impaired gingival autophagic response associated with disease. BACKGROUND: Autophagy is a cellular physiologic mechanism to maintain tissue homeostasis, while deficient autophagic responses increase inflammation and susceptibility to infection. METHODS: Rhesus monkeys [<3 years to 23 years of age (n = 34)] were examined for periodontal health and naturally occurring periodontitis. Gingival tissues samples were obtained from healthy or diseased sites, total RNA was isolated, and the Rhesus Gene Chip 1.0 ST (Affymetrix) was used for gene expression analysis of 150 autophagy-related genes. RESULTS: Comparison of expression levels with adult healthy tissues demonstrated a rather limited number of individual genes that were significantly different across the age-groups. In contrast, with periodontitis in the adults and aged animals, about 15% of the genes were significantly increased or decreased. The differences were reflected in the mTOR complex (5/12), ULK1/ATG1 complex (5/9), PI3K complex (5/21), ATG9 complex (2/7), ATG12 conjugation/LC3 lipidation (7/22), and lysosome fusion/vesicle degradation [LF/VD (5/10)] activities within the broader autophagic pathway. The genes most greatly altered in gingival tissues of naturally occurring periodontitis were identified in the ATG12 and LF/VD pathways that approximated 50% of the genes in each of those categories. While healthy gingival aging did not appear to reflect altered autophagy gene expression, substantial differences were noted with periodontitis irrespective of the age of the animals. Future studies into the role of autophagy in periodontitis and could offer potential new therapeutic strategies to prevent and/or treat periodontal disease.


Assuntos
Periodontite , Transcriptoma , Envelhecimento/genética , Animais , Autofagia/genética , Gengiva , Periodontite/genética , Transcriptoma/genética
4.
Front Immunol ; 11: 585414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193408

RESUMO

Objective: This study focused on documenting characteristics of the gingival transcriptome during various stages of periodontitis targeting genes associated with apoptotic and autophagic pathways and changes that specifically associate with features of the oral microbiome. Methods:Macaca mulatta (n = 18; 12-23 years) were examined at baseline and 0.5, 1, and 3 months of disease progression, as well as 5 months with clinical disease resolution. 16S sequencing and microarray analyses examined changes in the microbiome and gingival transcriptome, respectively, at each time point from every animal. Results: Specific patterns of apoptotic and autophagic genes were identified related to the initiation and progression of disease. The analysis also provided insights on the principal bacteria within the complex microbiome whose abundance was significantly correlated with differences in apoptotic and autophagic gene expression. Bacteria were identified that formed associated complexes with similar effects on the host gene expression profiles. A complex of Leptotrichia_unclassifed, Capnocytophaga_unclassified, Prevotella sp. 317, and Veillonellaceae_[G-1] sp. 155 were significantly negatively correlated with both apoptosis and autophagy. Whereas, Veillonellaceae_[G-1], Porphyromonadaceae, and F. alocis 539 were significantly positively correlated with both pathways, albeit this relationship was primarily associated with pro-apoptotic genes. Conclusions: The findings provide evidence for specific bacteria/bacterial complexes within the oral microbiome that appear to have a more substantive effect on regulating apoptotic and autophagic pathways in the gingival tissues with periodontitis.


Assuntos
Apoptose , Autofagia , Microbiota , Periodontite/microbiologia , Periodontite/patologia , Animais , Gengiva/microbiologia , Gengiva/patologia , Macaca mulatta , Boca/microbiologia , Boca/patologia , Transcriptoma
5.
Infect Immun ; 87(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885927

RESUMO

This investigation compared the microbiomes colonizing teeth during the initiation, progression, and resolution of periodontitis in nonhuman primates (Macaca mulatta) at different ages. Subgingival plaque samples were collected at baseline; 0.5, 1, and 3 months following ligature-induced periodontitis; and following naturally occurring disease resolution at 5 months. Samples were analyzed using 16S amplicon sequencing to identify bacterial profiles across age groups: young (<3 years of age), adolescent (3 to 7 years), adult (12 to 15 years), and aged (17 to 23 years). α-Diversity of the microbiomes was greater in the adult/aged samples than in the young/adolescent samples. ß-Diversity of the samples demonstrated clear age group differences, albeit individual variation in microbiomes between animals within the age categories was noted. Phylum distributions differed between the young/adolescent animals and the adult/aged animals at each of the time points, showing an enrichment of the phyla Spirochetes, Fusobacteria, and Bacteroidetes associated with periodontitis. Major differences in the top 50 operational taxonomic units (OTUs) were noted in the young and adolescent microbiomes during initiation and progression postligation compared to the adult and aged animals. The proportions of a large number of species in the top 50 OTUs were lower at baseline and in resolved disease microbiomes in the young samples, while profiles in adolescent animals were more consistent with the disease microbiomes. Microbiome profiles for resolution for adults and aged animals appeared more resilient and generally maintained a pattern similar to that of disease. Use of the model can expand our understanding of the crucial interactions of the oral microbiome and host responses in periodontitis.


Assuntos
Bactérias/isolamento & purificação , Macaca mulatta/crescimento & desenvolvimento , Microbiota , Periodontite/veterinária , Doenças dos Primatas/microbiologia , Fatores Etários , Animais , Bactérias/classificação , Bactérias/genética , Feminino , Macaca mulatta/microbiologia , Masculino , Boca/microbiologia , Periodontite/microbiologia , Periodontite/fisiopatologia , Filogenia , Doenças dos Primatas/fisiopatologia
6.
Mucosal Immunol ; 12(4): 1066, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30796336

RESUMO

The sequence for the Reverse primer used to amplify the human gene PLA2G2A presented in table 1 is incorrect. The following, is the correct sequence: Reverse 5' - GCTCCCTCTGCAGTGTTTATT -3.

7.
J Periodontal Res ; 54(2): 134-142, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30277577

RESUMO

OBJECTIVE AND BACKGROUND: The expression of periodontitis, including age of onset, extent, and severity is considered to represent an interaction of the individual's oral microbiome and host response to the microbial challenge that is modified by both genetics and environmental factors. The aim of this study was to determine the distribution of periodontitis in a population of nonhuman primates, to document features of familial distribution that could reflect heritability and transmission of microbes with enhanced virulence. MATERIAL AND METHODS: This report presents our findings from evaluation of periodontal disease bone defects in skulls from 569 animals (5-31 years of age) derived from the skeletons of the rhesus monkeys (Macaca mulatta) of Cayo Santiago derived from eight matrilines over 6-9 generations. The distance from the base of alveolar bone to the cemento-enamel junction on 1st /2nd premolars and 1st /2nd molars from all four quadrants was evaluated as a measure of periodontal disease. Additionally, we documented the presence of periodontitis in 79 living descendants within these matrilines. RESULTS: The results demonstrated an increased extent and severity of periodontitis with aging across all matrilines. Extensive heterogeneity in disease expression was observed among the animals and this was linked to specific periodontitis susceptible matrilines. Moreover, we identified some matrilines in which the members appeared to show some resistance to more severe disease, even with aging. CONCLUSION: Linking these disease variations to multigenerational matriarchal family units supported familial susceptibility of periodontitis. This familial disease relationship was reinforced by the distribution of naturally-occurring periodontitis in the living descendants.


Assuntos
Predisposição Genética para Doença/genética , Macaca mulatta/genética , Periodontite/genética , Periodontite/veterinária , Filogenia , Crânio/patologia , Fatores Etários , Envelhecimento , Animais , Feminino , Heterogeneidade Genética , Masculino , Periodontite/epidemiologia , Periodontite/patologia , Porto Rico/epidemiologia , Índice de Gravidade de Doença
8.
J Periodontol ; 89(7): 858-866, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29676776

RESUMO

BACKGROUND: Neuropeptides (NPs) are innate pivotal regulators of the immunoinflammatory response. Nevertheless, their role in the pathogenesis of periodontal disease remains unknown. Changes in gene expression of 10 NPs and 16 NP receptors (NPRs) coincident with the initiation, progression, and resolution of periodontitis were determined. METHODS: The ligature-induced periodontitis model was used in rhesus monkeys (n = 18). Gingival tissue samples were taken at baseline (preligatures), at 2 weeks and at 1 month (initiation), and at 3 months (progression) postligation. Ligatures were removed and samples taken 2 months later (resolution). Total RNA was isolated from tissues and NP/NPR gene expression microarray analysis was performed. Gene expression changes were validated by quantitative polymerase chain reaction and immunohistochemistry. RESULTS: Unexpectedly, the expression of pro-inflammatory NPs/NPRs did not change during periodontitis or with resolution. However, increased expression of the anti-inflammatory NPs adrenomedullin (ADM) and galanin (GAL), and the NPRs calcitonin receptor-like (CALCRL) and receptor activity-modifying protein-2 and -3 (RAMP2 and RAMP3) were observed during initiation and progression of disease. The expression of the same NPs/NPRs exhibited a significant positive correlation with both molecular (interleukin-1ß, matrix mettaloproteinase-9, and receptor activator of nuclear factor-kappa B ligand) and clinical measures of gingival inflammation and tissue destruction. CONCLUSION: Initiation and progression of periodontitis involve significant overexpression of ADM, GAL, CALCRL, RAMP2, and RAMP3. These anti-inflammatory NPs/NPRs could play a role in the unresolved infection and inflammation that normally drives tissue destruction in periodontitis. Both ADM and GAL potentially are new candidates to consider as biomolecules associated with periodontal disease activity.


Assuntos
Mucosa Bucal , Neuropeptídeos , Animais , Primatas , Proteína 3 Modificadora da Atividade de Receptores , Receptores da Calcitonina
9.
Mucosal Immunol ; 11(4): 1047-1059, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515164

RESUMO

P. gingivalis (Pg) is an oral pathogen with the ability to induce oral dysbiosis and periodontal disease. Nevertheless, the mechanisms by which mucosal responses to the oral microbiota in the presence of specific pathogens such as Pg could abrogate the host-microbe symbiotic relationship leading to periodontitis remain unclear. Herein, we identified the Notch-1/PLA2-IIA axis as a new molecular pathway through which Pg could be specifically modulating oral epithelial antimicrobial and inflammatory responses. Pg activated Notch-1, and inhibition or silencing of Notch-1 completely abrogated Pg-induced PLA2-IIA in oral epithelial cells (OECs). Activation of Notch-1 and PLA2-IIA production were associated with Pg-produced gingipains. Other oral Gram-positive and Gram-negative species failed to induce similar responses. Pg enhanced OEC antimicrobial activity through PLA2-IIA. Increased Notch-1 activation correlated with higher PLA2-IIA gingival expression and changes in the abundance of specific oral bacteria phyla during periodontal disease. Oral bacterial species exhibited differential antimicrobial susceptibility to PLA2-IIA. These findings support previous evidence suggesting an important role for epithelial Notch-1 activation and PLA2-IIA production during health and disease at mucosal surfaces, and provide new mechanistic information concerning the regulation of epithelial antimicrobial and pro-inflammatory responses modulated by oral pathogenic bacteria associated with periodontal disease.


Assuntos
Anti-Infecciosos/metabolismo , Infecções por Bacteroidaceae/imunologia , Células Epiteliais/fisiologia , Fosfolipases A2 do Grupo II/metabolismo , Boca/patologia , Doenças Periodontais/imunologia , Porphyromonas gingivalis/fisiologia , Receptor Notch1/metabolismo , Linhagem Celular , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Fosfolipases A2 do Grupo II/genética , Interações Hospedeiro-Patógeno , Humanos , Microbiota , Transdução de Sinais
10.
J Clin Periodontol ; 43(5): 408-17, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26859687

RESUMO

AIM: Cellular and molecular immunoinflammatory changes in gingival tissues drive alveolar bone loss in periodontitis. Since ageing is a risk factor for periodontitis, we sought to identify age-related gingival transcriptome changes associated with bone metabolism in both healthy and in naturally occurring periodontitis. MATERIALS AND METHODS: Adult (12-16 years) and aged (18-23 years) non-human primates (M. mulatta) (n = 24) were grouped into healthy and periodontitis. Gingival tissue samples were obtained and subjected to microarray analysis using the Gene Chip Macaque Genome Array. Gene expression profiles involved in osteoclast/osteoblast proliferation, adhesion and function were evaluated and compared across and between the age groups. QPCR was also performed on selected genes to validate microarray data. RESULTS: Healthy aged tissues showed a gene profile expression that suggest enhancement of osteoclastic adhesion, proliferation/survival and function (SPP1, TLR4, MMP8 and TFEC) and impaired osteoblastic activity (SMEK3P and SMAD5). The gingival transcriptome in both adult and aged animals with naturally occurring periodontitis (FOS, IL6, TLR4, MMP9, MMP10 and SPP1 genes) was consistent with a local inflammatory response driving towards bone/connective tissue destruction. CONCLUSION: A pro-osteoclastogenic gingival transcriptome is associated with periodontitis irrespective of age; however; a greater bone-destructive molecular environment is associated with ageing in healthy tissues.


Assuntos
Transcriptoma , Adolescente , Envelhecimento , Perda do Osso Alveolar , Animais , Gengiva , Humanos , Macaca mulatta , Periodontite , Adulto Jovem
12.
Am J Primatol ; 78(1): 143-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25708960

RESUMO

Substantial ongoing research continues to explore the contribution of genetics and environment to the onset, extent and severity of periodontal disease(s). Existing evidence supports that periodontal disease appears to have an increased prevalence in family units with a member having aggressive periodontitis. We have been using the nonhuman primate as a model of periodontal disease for over 25 years with these species demonstrating naturally occurring periodontal disease that increases with age. This report details our findings from evaluation of periodontal disease in skulls from 97 animals (5-31 years of age) derived from the skeletons of the rhesus monkeys (Macaca mulatta) on Cayo Santiago. Periodontal disease was evaluated by determining the distance from the base of the alveolar bone defect to the cemento-enamel junction on 1st/2nd premolars and 1st/2nd molars from all four quadrants. The results demonstrated an increasing extent and severity of periodontitis with aging across the population of animals beyond only compensatory eruption. Importantly, irrespective of age, extensive heterogeneity in disease expression was observed among the animals. Linking these variations to multi-generational matriarchal family units supported familial susceptibility of periodontitis. As the current generations of animals that are descendants from these matrilines are alive, studies can be conducted to explore an array of underlying factors that could account for susceptibility or resistance to periodontal disease.


Assuntos
Macaca mulatta , Doenças dos Macacos/epidemiologia , Doenças Periodontais/veterinária , Animais , Feminino , Masculino , Doenças dos Macacos/genética , Doenças Periodontais/epidemiologia , Doenças Periodontais/genética , Porto Rico/epidemiologia
13.
Am J Primatol ; 78(1): 117-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25940511

RESUMO

The circadian clock disorders in humans remain poorly understood. However, their impact on the development and progression of major human conditions, from cancer to insomnia, metabolic or mental illness becomes increasingly apparent. Addressing human circadian disorders in animal models is, in part, complicated by inverse temporal relationship between the core clock and specific physiological or behavioral processes in diurnal and nocturnal animals. Major advantages of a macaque model for translational circadian research, as a diurnal vertebrate phylogenetically close to humans, are further emphasized by the discovery of the first familial circadian disorder in non-human primates among the rhesus monkeys originating from Cayo Santiago. The remarkable similarity of their pathological phenotypes to human Delayed Sleep Phase Disorder (DSPD), high penetrance of the disorder within one branch of the colony and the large number of animals available provide outstanding opportunities for studying the mechanisms of circadian disorders, their impact on other pathological conditions, and for the development of novel and effective treatment strategies.


Assuntos
Transtornos Cronobiológicos/etiologia , Relógios Circadianos , Macaca mulatta/fisiologia , Sono , Animais , Humanos , Modelos Animais , Porto Rico
14.
J Clin Periodontol ; 41(9): 853-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975876

RESUMO

AIM: Variations in the expression of cytokines during the progression of periodontitis remain ill-defined. We evaluated the expression of 19 cytokine genes related to T-cell phenotype/function during initiation, progression and resolution of periodontitis, and related these to the expression of soft and bone tissue destruction genes (TDGs). MATERIALS AND METHODS: A ligature-induced periodontitis model was used in rhesus monkeys (M. mulatta) (n = 18). Gingival tissues were taken at baseline pre-ligation, 2 weeks and 1 month (Initiation) and 3 months (progression) post ligation. Ligatures were removed and samples taken 2 months later (resolution). Total RNA was isolated and the Rhesus Gene 1.0 ST (Affymetrix) used for gene expression analysis. Significant expression changes were validated by qRT-PCR. RESULTS: Disease initiation/progression was characterized by overexpression of Th17/Treg cytokine genes (IL-1ß, IL-6, TGFß and IL-21) and down-regulation of Th1/Th2 cytokine genes (IL-18 and IL-25). Increased IL-2 and decreased IL-10 levels were seen during disease resolution. Several Th17/Treg cytokine genes positively correlated with TDGs, whereas most Th1/Th2 genes exhibited a negative correlation. CONCLUSION: Initiation, progression and resolution of periodontitis involve over- and underexpression of cytokine genes related to various T-helper subsets. In addition, variations in individual T-helper response subset/genes during disease progression correlated with protective/destructive outcomes.


Assuntos
Citocinas/genética , Perfilação da Expressão Gênica , Periodontite/imunologia , Animais , Catepsina K/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interleucina-10/genética , Interleucina-17/genética , Interleucina-18/genética , Interleucina-1beta/genética , Interleucina-2/genética , Interleucina-6/genética , Interleucinas/genética , Macaca mulatta , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Periodontite/genética , Periodontite/fisiopatologia , Ligante RANK/genética , Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Fator de Crescimento Transformador beta/genética
15.
Int J Primatol ; 35(1): 188-209, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24659840

RESUMO

There is growing evidence that behavioral tendencies, or "personalities," in animals are an important aspect of their biology, yet their evolutionary basis is poorly understood. Specifically, how individual variation in personality arises and is subsequently maintained by selection remains unclear. To address this gap, studies of personality require explicit incorporation of genetic information. Here, we explored the genetic basis of personality in rhesus macaques by determining the heritability of personality components and by examining the fitness consequences of those components. We collected observational data for 108 adult females living in three social groups in a free-ranging population via focal animal sampling. We applied principal component analysis to nine spontaneously occurring behaviors and identified six putative personality components, which we named Meek, Bold, Aggressive, Passive, Loner, and Nervous. All components were repeatable and heritable, with heritability estimates ranging from 0.14 to 0.35. We found no evidence of an association with reproductive output, measured either by infant survival or by interbirth interval, for any of the personality components. This finding suggests either that personality does not have fitness-related consequences in this population or that selection has acted to reduce fitness-associated variation in personality.

16.
J Clin Periodontol ; 41(4): 327-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24304139

RESUMO

AIM: Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in ageing gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. MATERIALS AND METHODS: Rhesus monkeys (n = 34) from 3 to 23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites was obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. RESULTS: The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with ageing in healthy gingival tissues. In contrast, both adult and ageing periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. CONCLUSION: These transcriptional changes suggest a response of healthy ageing tissues through the class II pathway (i.e. endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intracellular microbial pathogens.


Assuntos
Envelhecimento/imunologia , Apresentação de Antígeno/imunologia , Gengiva/imunologia , Periodontite/imunologia , Imunidade Adaptativa/imunologia , Envelhecimento/genética , Animais , Anticorpos/imunologia , Apresentação de Antígeno/genética , Células Apresentadoras de Antígenos/imunologia , Catepsinas/genética , Catepsinas/imunologia , Feminino , Perfilação da Expressão Gênica , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DP/imunologia , Cadeias alfa de HLA-DR/genética , Cadeias alfa de HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Células Matadoras Naturais/imunologia , Macaca mulatta , Masculino , Análise em Microsséries , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/imunologia , Análise de Componente Principal , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Transcriptoma/genética , Transcriptoma/imunologia
17.
Am J Primatol ; 75(12): 1152-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23847126

RESUMO

Density-dependence is hypothesized as the major mechanism of population regulation. However, the lack of long-term demographic data has hampered the use of density-dependent models in nonhuman primates. In this study, we make use of the long-term demographic data from Cayo Santiago's rhesus macaques to parameterize and analyze both a density-independent and a density-dependent population matrix model, and compare their projections with the observed population changes. We also employ a retrospective analysis to determine how variance in vital rates, and covariance among them, contributed to the observed variation in long-term fitness across different levels of population density. The population exhibited negative density-dependence in fertility and the model incorporating this relationship accounted for 98% of the observed population dynamics. Variation in survival and fertility of sexually active individuals contributed the most to the variation in long-term fitness, while vital rates displaying high temporal variability exhibited lower sensitivities. Our findings are novel in describing density-dependent dynamics in a provisioned primate population, and in suggesting that selection is acting to lower the variance in the population growth rate by minimizing the variation in adult survival at high density. Because density-dependent mechanisms may become stronger in wild primate populations due to increasing habitat loss and food scarcity, our study demonstrates that it is important to incorporate variation in population size, as well as demographic variability into population viability analyses for a better understanding of the mechanisms regulating the growth of primate populations.


Assuntos
Macaca mulatta/fisiologia , Animais , Fertilidade , Densidade Demográfica , Dinâmica Populacional , Porto Rico
18.
Sci Rep ; 3: 1042, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23304433

RESUMO

Sociality is believed to have evolved as a strategy for animals to cope with their environments. Yet the genetic basis of sociality remains unclear. Here we provide evidence that social network tendencies are heritable in a gregarious primate. The tendency for rhesus macaques, Macaca mulatta, to be tied affiliatively to others via connections mediated by their social partners - analogous to friends of friends in people - demonstrated additive genetic variance. Affiliative tendencies were predicted by genetic variation at two loci involved in serotonergic signalling, although this result did not withstand correction for multiple tests. Aggressive tendencies were also heritable and were related to reproductive output, a fitness proxy. Our findings suggest that, like humans, the skills and temperaments that shape the formation of multi-agent relationships have a genetic basis in nonhuman primates, and, as such, begin to fill the gaps in our understanding of the genetic basis of sociality.


Assuntos
Variação Genética , Macaca mulatta/genética , Comportamento Social , Agressão , Alelos , Animais , Asseio Animal , Polimorfismo Genético , Reprodução/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Triptofano Hidroxilase/genética
19.
Apoptosis ; 18(3): 249-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23334583

RESUMO

Apoptotic processes are important for physiologic renewal of an intact epithelial barrier and contribute some antimicrobial resistance for bacteria and viruses, as well as anti-inflammatory effects that benefits the mucosa. The oral cavity presents a model of host-bacterial interactions at mucosal surfaces, in which a panoply of microorganisms colonizes various niches in the oral cavity and creates complex multispecies biofilms that challenge the gingival tissues. This report details gene expression in apoptotic pathways that occur in oral mucosal tissues across the lifespan, using a nonhuman primate model. Macaca mulatta primates from 2 to 23 years of age (n = 23) were used in a cross-sectional study to obtain clinical healthy gingival tissues specimens. Further, mRNA was prepared and evaluated using the Affymetrix Rhesus GeneChip and 88 apoptotic pathway genes were evaluated. The results identified significant positive correlations with age in 12 genes and negative correlations with an additional five genes. The gene effects were predicted to alter apoptosis receptor levels, extrinsic apoptotic pathways through caspases, cytokine effects on apoptotic events, Ca(+2)-induced death signaling, cell cycle checkpoints, and potential effects of survival factors. Both the positively and negatively correlated genes within the apoptotic pathways provided evidence that healthy tissues in aging animals exhibit decreased apoptotic potential compared to younger animals. The results suggested that decreased physiologic apoptotic process in the dynamic septic environment of the oral mucosal tissues could increase the risk of aging tissues to undergo destructive disease processes through dysregulated inflammatory responses to the oral microbial burden.


Assuntos
Apoptose/genética , Gengiva/metabolismo , Mucosa Bucal/metabolismo , Envelhecimento , Animais , Apoptose/fisiologia , Biofilmes , Caspases/genética , Estudos Transversais , Feminino , Macaca mulatta , Masculino , Mucosa Bucal/microbiologia , Transdução de Sinais , Transcriptoma
20.
Gut Pathog ; 4(1): 9, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22920270

RESUMO

BACKGROUND: Helicobacter pylori are successful colonizers of the human gastric mucosa. Colonization increases the risk of peptic ulcer disease and adenocarcinoma. However, potential benefits of H. pylori colonization include protection against early-onset asthma and against gastrointestinal infections. Campylobacter jejuni are a leading cause of bacterial diarrhea and complications include Guillain-Barré syndrome. Here, we describe the development of reliable serological assays to detect antibodies against those two bacteria in Rhesus macaques and investigated their distribution within a social group of monkeys. METHODS: Two cohorts of monkeys were analyzed. The first cohort consisted of 30 monkeys and was used to establish an enzyme-linked immunosorbent assay (ELISA) for H. pylori antibodies detection. To evaluate colonization of those macaques, stomach biopsies were collected and analyzed for the presence of H. pylori by histology and culture. C. jejuni ELISAs were established using human serum with known C. jejuni antibody status. Next, plasma samples of the 89 macaques (Cohort 2) were assayed for antibodies and then statistically analyzed. RESULTS: An H. pylori IgG ELISA, which was 100% specific and 93% sensitive, was established. In contrast, the IgA ELISA was only 82% specific and 61% sensitive. The CagA IgG assay was 100% sensitive and 61% of the macaques were positive. In cohort 2, 62% macaques were H. pylori sero-positive and 52% were CagA positive. The prevalence of H. pylori IgG and CagA IgG increased with monkey age as described for humans. Of the 89 macaques 52% showed IgG against C. jejuni but in contrast to H. pylori, the sero-prevalence was not associated with increasing age. However, there was a drop in the IgG (but not in IgA) mean values between infant and juvenile macaques, similar to trends described in humans. CONCLUSIONS: Rhesus macaques have widespread exposure to H. pylori and C. jejuni, reflecting their social conditions and implying that Rhesus macaques might provide a model to study effects of these two important human mucosal bacteria on a population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA