Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018332

RESUMO

A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-ß-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.

2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569630

RESUMO

Great effort has been devoted to the synthesis of novel multi-target directed tacrine derivatives in the search of new treatments for Alzheimer's disease (AD). Herein we describe the proof of concept of MBA121, a compound designed as a tacrine-ferulic acid hybrid, and its potential use in the therapy of AD. MBA121 shows good ß-amyloid (Aß) anti-aggregation properties, selective inhibition of human butyrylcholinesterase, good neuroprotection against toxic insults, such as Aß1-40, Aß1-42, and H2O2, and promising ADMET properties that support translational developments. A passive avoidance task in mice with experimentally induced amnesia was carried out, MBA121 being able to significantly decrease scopolamine-induced learning deficits. In addition, MBA121 reduced the Aß plaque burden in the cerebral cortex and hippocampus in APPswe/PS1ΔE9 transgenic male mice. Our in vivo results relate its bioavailability with the therapeutic response, demonstrating that MBA121 is a promising agent to treat the cognitive decline and neurodegeneration underlying AD.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Tacrina/farmacologia , Tacrina/uso terapêutico , Butirilcolinesterase , Peróxido de Hidrogênio/uso terapêutico , Peptídeos beta-Amiloides , Camundongos Transgênicos , Modelos Animais de Doenças , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico
3.
J Funct Biomater ; 14(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37504837

RESUMO

Titanium (Ti-6Al-4V) substrates were functionalized through the covalent binding of fibronectin, and the effect of the existence of this extracellular matrix protein on the surface of the material was assessed by employing mesenchymal stem cell (MSC) cultures. The functionalization process comprised the usage of the activation vapor silanization (AVS) technique to deposit a thin film with a high surface density of amine groups on the material, followed by the covalent binding of fibronectin to the amine groups using the N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) crosslinking chemistry. The biological effect of the fibronectin on murine MSCs was assessed in vitro. It was found that functionalized samples not only showed enhanced initial cell adhesion compared with bare titanium, but also a three-fold increase in the cell area, reaching values comparable to those found on the polystyrene controls. These results provide compelling evidence of the potential to modulate the response of the organism to an implant through the covalent binding of extracellular matrix proteins on the prosthesis.

4.
Epilepsia ; 64(9): 2499-2514, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37277947

RESUMO

OBJECTIVE: Ischemic stroke is one of the main causes of death and disability worldwide and currently has limited treatment options. Electroencephalography (EEG) signals are significantly affected in stroke patients during the acute stage. In this study, we preclinically characterized the brain electrical rhythms and seizure activity during the hyperacute and late acute phases in a hemispheric stroke model with no reperfusion. METHODS: EEG signals and seizures were studied in a model of hemispheric infarction induced by permanent occlusion of the middle cerebral artery (pMCAO), which mimics the clinical condition of stroke patients with permanent ischemia. Electrical brain activity was also examined using a photothrombotic (PT) stroke model. In the PT model, we induced a similar (PT group-1) or smaller (PT group-2) cortical lesion than in the pMCAO model. For all models, we used a nonconsanguineous mouse strain that mimics human diversity and genetic variation. RESULTS: The pMCAO hemispheric stroke model exhibited thalamic-origin nonconvulsive seizures during the hyperacute stage that propagated to the thalamus and cortex. The seizures were also accompanied by progressive slowing of the EEG signal during the acute phase, with elevated delta/theta, delta/alpha, and delta/beta ratios. Cortical seizures were also confirmed in the PT stroke model of similar lesions as in the pMCAO model, but not in the PT model of smaller injuries. SIGNIFICANCE: In the clinically relevant pMCAO model, poststroke seizures and EEG abnormalities were inferred from recordings of the contralateral hemisphere (noninfarcted hemisphere), emphasizing the reciprocity of interhemispheric connections and that injuries affecting one hemisphere had consequences for the other. Our results recapitulate many of the EEG signal hallmarks seen in stroke patients, thereby validating this specific mouse model for the examination of the mechanistic aspects of brain function and for the exploration of the reversion or suppression of EEG abnormalities in response to neuroprotective and anti-epileptic therapies.


Assuntos
Transtornos Cerebrovasculares , Acidente Vascular Cerebral , Humanos , Camundongos , Animais , Acidente Vascular Cerebral/complicações , Convulsões , Encéfalo , Eletroencefalografia/efeitos adversos , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Tálamo
5.
Int J Biol Macromol ; 244: 125369, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37321435

RESUMO

The adhesion forces of cells to peptide-coated functionalized materials were assessed through the Single Cell Force Spectroscopy (SCFS) technique in order to develop a methodology that allows the fast selection of peptide motifs that favor the interaction between cells and the biomaterial. Borosilicate glasses were functionalized using the activated vapor silanization process (AVS) and subsequently decorated with an RGD- containing peptide using the EDC/NHS crosslinking chemistry. It is shown that the RGD-coated glass induces larger attachment forces on mesenchymal stem cell cultures (MSCs), compared to the bare glass substrates. These higher forces correlate well with the enhanced adhesion of the MSCs observed on RGD-coated substrates through conventional adhesion cell cultures and inverse centrifugation tests. The methodology based on the SCFS technique presented in this work constitutes a fast procedure for the screening of new peptides or their combinations to select candidates that may enhance the response of the organism to the implant of the functionalized biomaterials.


Assuntos
Materiais Biocompatíveis , Oligopeptídeos , Adesão Celular/fisiologia , Análise Espectral/métodos , Materiais Biocompatíveis/química , Oligopeptídeos/química , Microscopia de Força Atômica/métodos , Propriedades de Superfície
6.
Polymers (Basel) ; 15(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37299290

RESUMO

Central nervous system (CNS) diseases represent an extreme burden with significant social and economic costs. A common link in most brain pathologies is the appearance of inflammatory components that can jeopardize the stability of the implanted biomaterials and the effectiveness of therapies. Different silk fibroin scaffolds have been used in applications related to CNS disorders. Although some studies have analyzed the degradability of silk fibroin in non-cerebral tissues (almost exclusively upon non-inflammatory conditions), the stability of silk hydrogel scaffolds in the inflammatory nervous system has not been studied in depth. In this study, the stability of silk fibroin hydrogels exposed to different neuroinflammatory contexts has been explored using an in vitro microglial cell culture and two in vivo pathological models of cerebral stroke and Alzheimer's disease. This biomaterial was relatively stable and did not show signs of extensive degradation across time after implantation and during two weeks of in vivo analysis. This finding contrasted with the rapid degradation observed under the same in vivo conditions for other natural materials such as collagen. Our results support the suitability of silk fibroin hydrogels for intracerebral applications and highlight the potentiality of this vehicle for the release of molecules and cells for acute and chronic treatments in cerebral pathologies.

7.
Biomimetics (Basel) ; 8(1)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36810396

RESUMO

After an injury, the limited regenerative capacity of the central nervous system makes the reconnection and functional recovery of the affected nervous tissue almost impossible. To address this problem, biomaterials appear as a promising option for the design of scaffolds that promote and guide this regenerative process. Based on previous seminal works on the ability of regenerated silk fibroin fibers spun through the straining flow spinning (SFS) technique, this study is intended to show that the usage of functionalized SFS fibers allows an enhancement of the guidance ability of the material when compared with the control (nonfunctionalized) fibers. It is shown that the axons of the neurons not only tend to follow the path marked by the fibers, in contrast to the isotropic growth observed on conventional culture plates, but also that this guidance can be further modulated through the biofunctionalization of the material with adhesion peptides. Establishing the guidance ability of these fibers opens the possibility of their use as implants for spinal cord injuries, so that they may represent the core of a therapy that would allow the reconnection of the injured ends of the spinal cord.

8.
J Mech Behav Biomed Mater ; 140: 105729, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36801780

RESUMO

The true stress-true strain curves of 11 Australian spider species from the Entelegynae lineage were tensile tested and classified based on the values of the alignment parameter, α*, in the framework of the Spider Silk Standardization Initiative (S3I). The application of the S3I methodology allowed the determination of the alignment parameter in all cases, and were found to range between α* = 0.03 and α* = 0.65. These data, in combination with previous results on other species included in the Initiative, were exploited to illustrate the potential of this approach by testing two simple hypotheses on the distribution of the alignment parameter throughout the lineage: (1) whether a uniform distribution may be compatible with the values obtained from the studied species, and (2) whether any trend may be established between the distribution of the α* parameter and phylogeny. In this regard, the lowest values of the α* parameter are found in some representatives of the Araneidae group, and larger values seem to be found as the evolutionary distance from this group increases. However, a significant number of outliers to this apparent general trend in terms of the values of the α* parameter are described.


Assuntos
Seda , Aranhas , Animais , Resistência à Tração , Austrália
9.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806455

RESUMO

Brain stroke is a highly prevalent pathology and a main cause of disability among older adults. If not promptly treated with recanalization therapies, primary and secondary mechanisms of injury contribute to an increase in the lesion, enhancing neurological deficits. Targeting excitotoxicity and oxidative stress are very promising approaches, but only a few compounds have reached the clinic with relatively good positive outcomes. The exploration of novel targets might overcome the lack of clinical translation of previous efficient preclinical neuroprotective treatments. In this study, we examined the neuroprotective properties of 2-aminoethoxydiphenyl borate (2-APB), a molecule that interferes with intracellular calcium dynamics by the antagonization of several channels and receptors. In a permanent model of cerebral ischemia, we showed that 2-APB reduces the extent of the damage and preserves the functionality of the cortical territory, as evaluated by somatosensory evoked potentials (SSEPs). While in this permanent ischemia model, the neuroprotective effect exerted by the antioxidant scavenger cholesteronitrone F2 was associated with a reduction in reactive oxygen species (ROS) and better neuronal survival in the penumbra, 2-APB did not modify the inflammatory response or decrease the content of ROS and was mostly associated with a shortening of peri-infarct depolarizations, which translated into better cerebral blood perfusion in the penumbra. Our study highlights the potential of 2-APB to target spreading depolarization events and their associated inverse hemodynamic changes, which mainly contribute to extension of the area of lesion in cerebrovascular pathologies.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , Idoso , Boratos/farmacologia , Isquemia Encefálica/patologia , Circulação Cerebrovascular/fisiologia , Humanos , Infarto , Neuroproteção , Espécies Reativas de Oxigênio
10.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807389

RESUMO

High-performance regenerated silkworm (Bombyx mori) silk fibers can be produced efficiently through the straining flow spinning (SFS) technique. In addition to an enhanced biocompatibility that results from the removal of contaminants during the processing of the material, regenerated silk fibers may be functionalized conveniently by using a range of different strategies. In this work, the possibility of implementing various functionalization techniques is explored, including the production of fluorescent fibers that may be tracked when implanted, the combination of the fibers with enzymes to yield fibers with catalytic properties, and the functionalization of the fibers with cell-adhesion motifs to modulate the adherence of different cell lineages to the material. When considered globally, all these techniques are a strong indication not only of the high versatility offered by the functionalization of regenerated fibers in terms of the different chemistries that can be employed, but also on the wide range of applications that can be covered with these functionalized fibers.


Assuntos
Bombyx , Fibroínas , Animais , Adesão Celular , Seda
11.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740081

RESUMO

Nitrones are encouraging drug candidates for the treatment of oxidative stress-driven diseases such as acute ischemic stroke (AIS). In a previous study, we found a promising quinolylnitrone, QN23, which exerted a neuroprotective effect in neuronal cell cultures subjected to oxygen-glucose deprivation and in experimental models of cerebral ischemia. In this paper, we update the biological and pharmacological characterization of QN23. We describe the suitability of intravenous administration of QN23 to induce neuroprotection in transitory four-vessel occlusion (4VO) and middle cerebral artery occlusion (tMCAO) experimental models of brain ischemia by assessing neuronal death, apoptosis induction, and infarct area, as well as neurofunctional outcomes. QN23 significantly decreased the neuronal death and apoptosis induced by the ischemic episode in a dose-dependent manner and showed a therapeutic effect when administered up to 3 h after post-ischemic reperfusion onset, effects that remained 11 weeks after the ischemic episode. In addition, QN23 significantly reduced infarct volume, thus recovering the motor function in a tMCAO model. Remarkably, we assessed the antioxidant activity of QN23 in vivo using dihydroethidium as a molecular probe for radical species. Finally, we describe QN23 pharmacokinetic parameters. All these results pointing to QN23 as an interesting and promising preclinical candidate for the treatment of AIS.

12.
Soft Matter ; 18(26): 4973-4982, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748816

RESUMO

Silk gut fibers were produced from the silkworm Samia cynthia ricini silk glands by the usual procedure of immersion in a mildly acidic solution and subsequent stretching. The morphology of the silk guts was assessed by scanning electron microscopy, and their microstructure was assessed by infrared spectroscopy and X-ray diffraction. It was found that both naturally spun and Samia silk guts share a common semicrystalline microstructure. The mechanical characterization of the silk guts revealed that these fibers show an elastomeric behavior when tested in water, and exhibit a genuine ground state to which the fiber may revert independently of its previous loading history. In spite of its large cross-sectional area compared with naturally spun silk fibers, Samia silk guts show values of work to fracture up to 160 MJ m-3, much larger than those of most of their natural counterparts, and establish a new record value for this parameter in silk guts.


Assuntos
Bombyx , Seda , Animais , Seda/química , Espectrofotometria Infravermelho , Difração de Raios X
13.
Biomater Adv ; 133: 112614, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527152

RESUMO

Titanium implants are widely used in traumatology and various orthopedic fields. Titanium and other metallic-based implants have limited structural and functional integration into the body, which translates into progressive prosthesis instability and the need for new surgical interventions that have enormous social and economic impacts. To enhance the biocompatibility of titanium implants, numerous biofunctionalization strategies have been developed. However, the problem persists, as more than 70% of implant failures are due to aseptic loosening. In this study we addressed the problem of improving the physiological engraftability and acceptability of titanium-based implants by applying a robust and versatile functionalization method based on the covalent immobilization of extracellular matrix (ECM)-derived oligopeptides on Ti-6Al-4V surfaces treated by activated vapor silanization (AVS). The feasibility of this technique was evaluated with two oligopeptides of different structures and compositions. These oligopeptides were immobilized on Ti-6Al-4V substrates by a combination of AVS and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) crosslinking chemistry. The immobilization was shown to be stable and resistant to chemical denaturing upon sodium dodecyl sulfate treatment. On Ti-6Al-4V surfaces both peptides increased the attachment, spreading, rearrangement and directional growth of mesenchymal stem and progenitor cells (MSC) with chondro- and osteo-regenerative capacities. We also found that this biofunctionalization method (AVS-EDC/NHS) increased the attachment capacity of an immortalized cell line of neural origin with poor adhesive properties, highlighting the versatility and robustness of this method in terms of potential oligopeptides that may be used, and cell lineages whose anchorage to the biomaterial may be enhanced. Collectively, this novel functionalization strategy can accelerate the development of advanced peptide-functionalized metallic surfaces, which, in combination with host or exogenously implanted stem cells, have the potential to positively affect the osteoregenerative and osteointegrative abilities of metallic-based prostheses.


Assuntos
Matriz Extracelular , Titânio , Ligas , Adesão Celular , Oligopeptídeos/farmacologia , Titânio/farmacologia
14.
Front Cell Dev Biol ; 10: 741499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223826

RESUMO

Obtaining oligodendroglial cells from dispensable tissues would be of great interest for autologous or immunocompatible cell replacement therapy in demyelinating diseases, as well as for studying myelin-related pathologies or testing therapeutic approaches in culture. We evaluated the feasibility of generating oligodendrocyte precursor cells (OPCs) from adult rat adipose tissue by expressing genes encoding transcription factors involved in oligodendroglial development. Adipose-derived mesenchymal cells were lentivirally transduced with tetracycline-inducible Sox10, Olig2, Zfp536, and/or Nkx6.1 transgenes. Immunostaining with the OPC-specific O4 monoclonal antibody was used to mark oligodendroglial induction. O4- and myelin-associated glycoprotein (MAG)-positive cells emerged after 3 weeks when using the Sox10 + Olig2 + Zfp536 combination, followed in the ensuing weeks by GFAP-, O1 antigen-, p75NTR (low-affinity NGF receptor)-, and myelin proteins-positive cells. The O4+ cell population progressively expanded, eventually constituting more than 70% of cells in culture by 5 months. Sox10 transgene expression was essential for generating O4+ cells but was insufficient for inducing a full oligodendroglial phenotype. Converted cells required continuous transgene expression to maintain their glial phenotype. Some vestigial characteristics of mesenchymal cells were maintained after conversion. Growth factor withdrawal and triiodothyronine (T3) supplementation generated mature oligodendroglial phenotypes, while FBS supplementation produced GFAP+- and p75NTR+-rich cultures. Converted cells also showed functional characteristics of neural-derived OPCs, such as the expression of AMPA, NMDA, kainate, and dopaminergic receptors, as well as similar metabolic responses to differentiation-inducing drugs. When co-cultured with rat dorsal root ganglion neurons, the converted cells differentiated and ensheathed multiple axons. We propose that functional oligodendroglia can be efficiently generated from adult rat mesenchymal cells by direct phenotypic conversion.

15.
Pharmaceutics ; 13(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806846

RESUMO

Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.

16.
Brain Sci ; 11(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673399

RESUMO

During the transition from neonate to adulthood, brain maturation establishes coherence between behavioral states-wakefulness, non-rapid eye movement, and rapid eye movement sleep. In animal models few studies have characterized and analyzed cerebral rhythms and the sleep-wake cycle in early ages, in relation to adulthood. Since the analysis of sleep in early ages can be used as a predictive model of brain development and the subsequent emergence of neural disturbances in adults, we performed a study on late neonatal mice, an age not previously characterized. We acquired longitudinal 24 h electroencephalogram and electromyogram recordings and performed time and spectral analyses. We compared both age groups and found that late neonates: (i) spent more time in wakefulness and less time in non-rapid eye movement sleep, (ii) showed an increased relative band power in delta, which, however, reduced in theta during each behavioral state, (iii) showed a reduced relative band power in beta during wakefulness and non-rapid eye movement sleep, and (iv) manifested an increased total power over all frequencies. The data presented here might have implications expanding our knowledge of cerebral rhythms in early ages for identification of potential biomarkers in preclinical models of neurodegeneration.

17.
ACS Biomater Sci Eng ; 6(12): 6842-6852, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320622

RESUMO

The recovery of injured nervous tissue, one of the main goals for regenerative therapeutic approaches, is often hindered by the limited axonal regeneration ability of the central nervous system (CNS). In this regard, the identification of scaffolds that support the reconstruction of functional neuronal tissues and guide the alignment of regenerating neurons is a major challenge in tissue engineering. Ideally, the usage of such scaffolds would promote and guide the axonal growth, a crucial phase for the restoration of neuronal connections and, consequently, the nerve function. Among the materials proposed as scaffolds for CNS regeneration, silk has been used to exploit its outstanding features as a biomaterial to promote axonal regeneration. In this study, we explore, for the first time, the possibility of using high-performance regenerated silk fibers obtained by straining flow spinning (SFS) to serve as scaffolds for inducing and guiding the axonal growth. It is shown that SFS fibers promote the spontaneous organization of dissociated cortical primary cells into highly interconnected cellular spheroid-like tissue formations. Neuronal projections (i.e., axons) from these cellular spheroids span hundreds of microns along the SFS fibers that act as guides and allow the connection of distant spheroids. In addition, it is also shown that SFS fibers serve as scaffolds for neuronal migration covering short and long distances. As a consequence, the usage of high-performance SFS fibers appears as a promising basis for the development of novel therapies, leading to directed axonal regeneration.


Assuntos
Axônios , Seda , Regeneração Nervosa , Neurônios , Engenharia Tecidual
18.
Front Bioeng Biotechnol ; 8: 588014, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363125

RESUMO

Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.

19.
Front Bioeng Biotechnol ; 8: 549089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224926

RESUMO

Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 years old people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting of intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, the development of biomaterials-based approaches for a personalized and controlled delivery of therapeutic drugs and biomolecules represents the main challenge for the defeat of this neurodegenerative disease. Here we present a critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In the first part we expose the physiological and clinical aspects of the disease, focusing on the multiple factors that give origin to the disorder and highlighting the contribution of these factors to the triggering of each step of the disease. Then we analyze available and under development biomaterials-based drug-delivery devices (DDD), taking into account the anatomical and functional characteristics of the healthy and ill retinal tissue.

20.
Front Bioeng Biotechnol ; 8: 584823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224936

RESUMO

The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA