Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352480

RESUMO

Microbial genomes produced by single-cell amplification are largely incomplete. Here, we show that primary template amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard amplification approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.

2.
Hemasphere ; 6(10): e785, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36204688

RESUMO

Infant acute lymphoblastic leukemia (ALL) with KMT2A-gene rearrangements (KMT2A-r) have few mutations and a poor prognosis. To uncover mutations that are below the detection of standard next-generation sequencing (NGS), a combination of targeted duplex sequencing and NGS was applied on 20 infants and 7 children with KMT2A-r ALL, 5 longitudinal and 6 paired relapse samples. Of identified nonsynonymous mutations, 87 had been previously implicated in cancer and targeted genes recurrently altered in KMT2A-r leukemia and included mutations in KRAS, NRAS, FLT3, TP53, PIK3CA, PAX5, PIK3R1, and PTPN11, with infants having fewer such mutations. Of identified cancer-associated mutations, 62% were below the resolution of standard NGS. Only 33 of 87 mutations exceeded 2% of cellular prevalence and most-targeted PI3K/RAS genes (31/33) and typically KRAS/NRAS. Five patients only had low-frequency PI3K/RAS mutations without a higher-frequency signaling mutation. Further, drug-resistant clones with FLT3 D835H or NRAS G13D/G12S mutations that comprised only 0.06% to 0.34% of diagnostic cells, expanded at relapse. Finally, in longitudinal samples, the relapse clone persisted as a minor subclone from diagnosis and through treatment before expanding during the last month of disease. Together, we demonstrate that infant and childhood KMT2A-r ALL harbor low-frequency cancer-associated mutations, implying a vast subclonal genetic landscape.

3.
Sci Adv ; 8(16): eabj1360, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442732

RESUMO

Treatment of acute lymphoblastic leukemia (ALL) necessitates continuous risk assessment of leukemic disease burden and infections that arise in the setting of immunosuppression. This study was performed to assess the feasibility of a hybrid capture next-generation sequencing panel to longitudinally measure molecular leukemic disease clearance and microbial species abundance in 20 pediatric patients with ALL throughout induction chemotherapy. This proof of concept helps establish a technical and conceptual framework that we anticipate will be expanded and applied to additional patients with leukemia, as well as extended to additional cancer types. Molecular monitoring can help accelerate the attainment of insights into the temporal biology of host-microbe-leukemia interactions, including how those changes correlate with and alter anticancer therapy efficacy. We also anticipate that fewer invasive bone marrow examinations will be required, as these methods improve with standardization and are validated for clinical use.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Sequência de DNA
4.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099548

RESUMO

Improvements in whole genome amplification (WGA) would enable new types of basic and applied biomedical research, including studies of intratissue genetic diversity that require more accurate single-cell genotyping. Here, we present primary template-directed amplification (PTA), an isothermal WGA method that reproducibly captures >95% of the genomes of single cells in a more uniform and accurate manner than existing approaches, resulting in significantly improved variant calling sensitivity and precision. To illustrate the types of studies that are enabled by PTA, we developed direct measurement of environmental mutagenicity (DMEM), a tool for mapping genome-wide interactions of mutagens with single living human cells at base-pair resolution. In addition, we utilized PTA for genome-wide off-target indel and structural variant detection in cells that had undergone CRISPR-mediated genome editing, establishing the feasibility for performing single-cell evaluations of biopsies from edited tissues. The improved precision and accuracy of variant detection with PTA overcomes the current limitations of accurate WGA, which is the major obstacle to studying genetic diversity and evolution at cellular resolution.


Assuntos
Variação Genética , Genoma Humano , Técnicas de Amplificação de Ácido Nucleico , Análise de Célula Única , Moldes Genéticos , Pareamento de Bases/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Humanos , Mutagênicos/metabolismo , Polimorfismo de Nucleotídeo Único/genética
5.
JAMA Oncol ; 6(4): 552-556, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855231

RESUMO

Importance: Bloodstream infection (BSI) is a common, life-threatening complication of treatment for cancer. Predicting BSI before onset of clinical symptoms would enable preemptive therapy, but there is no reliable screening test. Objective: To estimate sensitivity and specificity of plasma microbial cell-free DNA sequencing (mcfDNA-seq) for predicting BSI in patients at high risk of life-threatening infection. Design, Setting, and Participants: A prospective pilot cohort study of mcfDNA-seq for predicting BSI in pediatric patients (<25 years of age) with relapsed or refractory cancers at St Jude Children's Research Hospital, a specialist quaternary pediatric hematology-oncology referral center. Remnant clinical blood samples were collected during chemotherapy and hematopoietic cell transplantation. Samples collected during the 7 days before and at onset of BSI episodes, along with negative control samples from study participants, underwent blinded testing using a mcfDNA-seq test in a Clinical Laboratory Improvement Amendments/College of American Pathologists-approved laboratory. Main Outcomes and Measures: The primary outcomes were sensitivity of mcfDNA-seq for detecting a BSI pathogen during the 3 days before BSI onset and specificity of mcfDNA-seq in the absence of fever or infection in the preceding or subsequent 7 days. Results: Between August 9, 2017, and June 4, 2018, 47 participants (27 [57%] male; median age [IQR], 10 [5-14] years) were enrolled; 19 BSI episodes occurred in 12 participants, and predictive samples were available for 16 episodes, including 15 bacterial BSI episodes. In the 3 days before the onset of infection, predictive sensitivity of mcfDNA-seq was 75% for all BSIs (12 of 16; 95% CI, 51%-90%) and 80% (12 of 15; 95% CI, 55%-93%) for bacterial BSIs. The specificity of mcfDNA-seq, evaluated on 33 negative control samples from enrolled participants, was 82% (27 of 33; 95% CI, 66%-91%) for any bacterial or fungal organism and 91% (30 of 33; 95% CI, 76%-97%) for any common BSI pathogen, and the concentration of pathogen DNA was lower in control than predictive samples. Conclusions and Relevance: A clinically relevant pathogen can be identified by mcfDNA-seq days before the onset of BSI in a majority of episodes, potentially enabling preemptive treatment. Clinical application appears feasible pending further study. Trial Registration: ClinicalTrials.gov identifier: NCT03226158.


Assuntos
Infecções Relacionadas a Cateter/sangue , Ácidos Nucleicos Livres/sangue , Neoplasias/sangue , Sepse/sangue , Adolescente , Infecções Relacionadas a Cateter/complicações , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neoplasias/complicações , Neoplasias/microbiologia , Neoplasias/patologia , Sepse/complicações , Sepse/microbiologia , Sepse/patologia , Análise de Sequência de DNA
6.
Methods Mol Biol ; 1979: 227-234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028641

RESUMO

Single-cell genome sequencing can detect low-frequency genetic alterations present in complex tissues. However, the experimental procedures are technically challenging. This includes dissociation of the tissue, isolation of single cells, whole-genome amplification, sequencing library preparation, and an optional target enrichment. Here we describe how to perform each of these processes to obtain high-quality single-cell genome sequencing data.


Assuntos
Separação Celular/métodos , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Célula Única/métodos , Animais , DNA/genética , Variações do Número de Cópias de DNA , Biblioteca Gênica , Genoma , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos
7.
Nature ; 555(7696): 371-376, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489755

RESUMO

Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues. Here we present a pan-cancer study of somatic alterations, including single nucleotide variants, small insertions or deletions, structural variations, copy number alterations, gene fusions and internal tandem duplications in 1,699 paediatric leukaemias and solid tumours across six histotypes, with whole-genome, whole-exome and transcriptome sequencing data processed under a uniform analytical framework. We report 142 driver genes in paediatric cancers, of which only 45% match those found in adult pan-cancer studies; copy number alterations and structural variants constituted the majority (62%) of events. Eleven genome-wide mutational signatures were identified, including one attributed to ultraviolet-light exposure in eight aneuploid leukaemias. Transcription of the mutant allele was detectable for 34% of protein-coding mutations, and 20% exhibited allele-specific expression. These data provide a comprehensive genomic architecture for paediatric cancers and emphasize the need for paediatric cancer-specific development of precision therapies.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Leucemia/genética , Mutação/genética , Neoplasias/genética , Alelos , Aneuploidia , Criança , Variações do Número de Cópias de DNA , Exoma/genética , Humanos , Mutação/efeitos da radiação , Taxa de Mutação , Oncogenes/genética , Medicina de Precisão/tendências , Raios Ultravioleta/efeitos adversos
8.
BMC Genomics ; 18(1): 906, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178827

RESUMO

BACKGROUND: Single-cell genome sequencing provides high-resolution details of the clonal genomic modifications that occur during cancer initiation, progression, and ongoing evolution as patients undergo treatment. One limitation of current single-cell sequencing strategies is a suboptimal capacity to detect all classes of single-nucleotide and structural variants in the same cells. RESULTS: Here we present a new approach for determining comprehensive variant profiles of single cells using a microfluidic amplicon-based strategy to detect structural variant breakpoint sequences instead of using relative read depth to infer copy number changes. This method can reconstruct the clonal architecture and mutational history of a malignancy using all classes and sizes of somatic variants, providing more complete details of the temporal changes in mutational classes and processes that led to the development of a malignant neoplasm. Using this approach, we interrogated cells from a patient with leukemia, determining that processes producing structural variation preceded single nucleotide changes in the development of that malignancy. CONCLUSIONS: All classes and sizes of genomic variants can be efficiently detected in single cancer cells using our new method, enabling the ordering of distinct classes of mutations during tumor evolution.


Assuntos
Variação Genética , Variação Estrutural do Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Criança , Genômica/métodos , Humanos , Dispositivos Lab-On-A-Chip , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA