Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Ophthalmol ; 226: 1-12, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33422464

RESUMO

PURPOSE: We sought to develop and validate a deep learning model for segmentation of 13 features associated with neovascular and atrophic age-related macular degeneration (AMD). DESIGN: Development and validation of a deep-learning model for feature segmentation. METHODS: Data for model development were obtained from 307 optical coherence tomography volumes. Eight experienced graders manually delineated all abnormalities in 2712 B-scans. A deep neural network was trained with these data to perform voxel-level segmentation of the 13 most common abnormalities (features). For evaluation, 112 B-scans from 112 patients with a diagnosis of neovascular AMD were annotated by 4 independent observers. The main outcome measures were Dice score, intraclass correlation coefficient, and free-response receiver operating characteristic curve. RESULTS: On 11 of 13 features, the model obtained a mean Dice score of 0.63 ± 0.15, compared with 0.61 ± 0.17 for the observers. The mean intraclass correlation coefficient for the model was 0.66 ± 0.22, compared with 0.62 ± 0.21 for the observers. Two features were not evaluated quantitatively because of a lack of data. Free-response receiver operating characteristic analysis demonstrated that the model scored similar or higher sensitivity per false positives compared with the observers. CONCLUSIONS: The quality of the automatic segmentation matches that of experienced graders for most features, exceeding human performance for some features. The quantified parameters provided by the model can be used in the current clinical routine and open possibilities for further research into treatment response outside clinical trials.


Assuntos
Neovascularização de Coroide/diagnóstico por imagem , Aprendizado Profundo , Atrofia Geográfica/diagnóstico por imagem , Drusas Retinianas/diagnóstico por imagem , Degeneração Macular Exsudativa/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/fisiopatologia , Feminino , Atrofia Geográfica/tratamento farmacológico , Atrofia Geográfica/fisiopatologia , Humanos , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Redes Neurais de Computação , Curva ROC , Ranibizumab/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Drusas Retinianas/tratamento farmacológico , Drusas Retinianas/fisiopatologia , Sensibilidade e Especificidade , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual/fisiologia , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA