Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543204

RESUMO

Small Extracellular Vesicles (sEVs) are typically 30-150 nm in diameter, produced inside cells, and released into the extracellular space. These vesicles carry RNA, DNA, proteins, and lipids that reflect the characteristics of their parent cells, enabling communication between cells and the alteration of functions or differentiation of target cells. Owing to these properties, sEVs have recently gained attention as potential carriers for functional molecules and drug delivery tools. However, their use as a therapeutic platform faces limitations, such as challenges in mass production, purity issues, and the absence of established protocols and characterization methods. To overcome these, researchers are exploring the characterization and engineering of sEVs for various applications. This review discusses the origins of sEVs and their engineering for therapeutic effects, proposing areas needing intensive study. It covers the use of cell-derived sEVs in their natural state and in engineered forms for specific purposes. Additionally, the review details the sources of sEVs and their subsequent purification methods. It also outlines the potential of therapeutic sEVs and the requirements for successful clinical trials, including methods for large-scale production and purification. Finally, we discuss the progress of ongoing clinical trials and the implications for future healthcare, offering a comprehensive overview of the latest research in sEV applications.

2.
Small ; 19(37): e2300527, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226374

RESUMO

In this study, extracellular vesicles (EVs) are reimagined as more than just a cellular waste disposal system and are repurposed for cancer immunotherapy. Potent oncolytic EVs (bRSVF-EVs) loaded with misfolded proteins (MPs) are engineered, which are typically considered cellular debris. By impairing lysosomal function using bafilomycin A1 and expressing the respiratory syncytial virus F protein, a viral fusogen, MPs are successfully loaded into the EVs expressing RSVF. bRSVF-EVs preferentially transplant a xenogeneic antigen onto cancer cell membranes in a nucleolin-dependent manner, triggering an innate immune response. Furthermore, bRSVF-EV-mediated direct delivery of MPs into the cancer cell cytoplasm initiates endoplasmic reticulum stress and immunogenic cell death (ICD). This mechanism of action leads to substantial antitumor immune responses in murine tumor models. Importantly, when combined with PD-1 blockade, bRSVF-EV treatment elicits robust antitumor immunity, resulting in prolonged survival and complete remission in some cases. Overall, the findings demonstrate that utilizing tumor-targeting oncolytic EVs for direct cytoplasmic delivery of MPs to induce ICD in cancer cells represents a promising approach for enhancing durable antitumor immunity.


Assuntos
Vesículas Extracelulares , Neoplasias , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Neoplasias/patologia , Citoplasma , Citosol , Imunoterapia/métodos
3.
J Control Release ; 351: 727-738, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162554

RESUMO

The cluster of differentiation 47 (CD47) protein is abundantly expressed on various malignant cells and suppresses the phagocytic function of macrophages and dendritic cells. High CD47 expression levels are correlated with poor cancer survival. Antagonizing CD47 antibodies with potent antitumor effects have been developed in clinical trials, but have critical side effects, inducing anemia and thrombocytopenia. To develop a safe and potent CD47 blockade, we designed extracellular vesicles (EVs) harboring signal regulatory protein alpha (SIPRα)-EV-SIRPα (EVs that express SIPRα). EV-SIRPα showed minimal toxic effects on hematologic parameters and utilized RBCs as delivery vehicles to tumors rather than inducing anemia. EV-SIRPα inhibited ligation of residual CD47 molecules, which attribute to the EV-endocytosis-mediated CD47 depletion and steric hindrance of EV. In an immunologically cold tumor model, EV-SIRPα induced tumor-specific T-cell-mediated antitumor effects. When directly administered to the accessible lesions, EV-SIRPα monotherapy elicited an abscopal effect in the B16F10 tumor model by increasing immune cell infiltration and CD8+-mediated immunity against non-treated tumors. The combinational approach by loading doxorubicin into the EV-SIRPα dramatically reduced the tumor burden and led to 80% complete remission rate. Thus, a potent EV-based CD47 blockade that is hematologically safe, has efficient signaling blocking efficacy, and has systemic antitumor immunity against cancer is recommended.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Antígeno CD47 , Imunoterapia , Antígenos de Diferenciação/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Macrófagos , Vesículas Extracelulares/metabolismo , Fagocitose
4.
Front Cell Dev Biol ; 10: 822026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874812

RESUMO

Recent studies with single-particle tracking in live cells have revealed that chromatin dynamics are directly affected by transcription. However, how transcription alters the chromatin movements followed by changes in the physical properties of chromatin has not been elucidated. Here, we measured diffusion characteristics of chromatin by targeting telomeric DNA repeats with CRISPR-labeling. We found that transcription inhibitors that directly block transcription factors globally increased the movements of chromatin, while the other inhibitor that blocks transcription by DNA intercalating showed an opposite effect. We hypothesized that the increased mobility of chromatin by transcription inhibition and the decreased chromatin movement by a DNA intercalating inhibitor is due to alterations in chromatin rigidity. We also tested how volume confinement of nuclear space affects chromatin movements. We observed decreased chromatin movements under osmotic pressure and with overexpressed chromatin architectural proteins that compact chromatin.

5.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682801

RESUMO

The SARS-CoV-2 pandemic has created a global public crisis and heavily affected personal lives, healthcare systems, and global economies. Virus variants are continuously emerging, and, thus, the pandemic has been ongoing for over two years. Vaccines were rapidly developed based on the original SARS-CoV-2 (Wuhan-Hu-1) to build immunity against the coronavirus disease. However, they had a very low effect on the virus' variants due to their low cross-reactivity. In this study, a multivalent SARS-CoV-2 vaccine was developed using ferritin nanocages, which display the spike protein from the Wuhan-Hu-1, B.1.351, or B.1.429 SARS-CoV-2 on their surfaces. We show that the mixture of three SARS-CoV-2 spike-protein-displaying nanocages elicits CD4+ and CD8+ T cells and B-cell immunity successfully in vivo. Furthermore, they generate a more consistent antibody response against the B.1.351 and B.1.429 variants than a monovalent vaccine. This leads us to believe that the proposed ferritin-nanocage-based multivalent vaccine platform will provide strong protection against emerging SARS-CoV-2 variants of concern (VOCs).


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes/genética , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Ferritinas/genética , Humanos , Imunidade , Mutação , SARS-CoV-2 , Vacinas Combinadas
6.
Nat Commun ; 11(1): 6033, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247115

RESUMO

MicroRNAs (miRNAs) are short (19-24 nt) non-coding RNAs that suppress the expression of protein coding genes at the post-transcriptional level. Differential expression profiles of miRNAs across a range of diseases have emerged as powerful biomarkers, making a reliable yet rapid profiling technique for miRNAs potentially essential in clinics. Here, we report an amplification-free multi-color single-molecule imaging technique that can profile purified endogenous miRNAs with high sensitivity, specificity, and reliability. Compared to previously reported techniques, our technique can discriminate single base mismatches and single-nucleotide 3'-tailing with low false positive rates regardless of their positions on miRNA. By preloading probes in Thermus thermophilus Argonaute (TtAgo), miRNAs detection speed is accelerated by more than 20 times. Finally, by utilizing the well-conserved linearity between single-molecule spot numbers and the target miRNA concentrations, the absolute average copy numbers of endogenous miRNA species in a single cell can be estimated. Thus our technique, Ago-FISH (Argonaute-based Fluorescence In Situ Hybridization), provides a reliable way to accurately profile various endogenous miRNAs on a single miRNA sensing chip.


Assuntos
MicroRNAs/análise , MicroRNAs/isolamento & purificação , Sequência de Bases , Linhagem Celular , Humanos , Thermus/genética
7.
Nat Commun ; 9(1): 2777, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018371

RESUMO

Cas12a (also called Cpf1) is a representative type V-A CRISPR effector RNA-guided DNA endonuclease, which provides an alternative to type II CRISPR-Cas9 for genome editing. Previous studies have revealed that Cas12a has unique features distinct from Cas9, but the detailed mechanisms of target searching and DNA cleavage by Cas12a are still unclear. Here, we directly observe this entire process by using single-molecule fluorescence assays to study Cas12a from Acidaminococcus sp. (AsCas12a). We determine that AsCas12a ribonucleoproteins search for their on-target site by a one-dimensional diffusion along elongated DNA molecules and induce cleavage in the two DNA strands in a well-defined order, beginning with the non-target strand. Furthermore, the protospacer-adjacent motif (PAM) for AsCas12a makes only a limited contribution of DNA unwinding during R-loop formation and shows a negligible role in the process of DNA cleavage, in contrast to the Cas9 PAM.


Assuntos
Acidaminococcus/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , DNA/genética , RNA Guia de Cinetoplastídeos/genética , Acidaminococcus/enzimologia , Pareamento de Bases , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Clonagem Molecular , DNA/metabolismo , Clivagem do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Edição de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA