Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 20(5): 20230585, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38746983

RESUMO

Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here, we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii, transfer sulfate in vitro to the luciferin substrate, vargulin. We find luciferin sulfotransferases (LSTs) of ostracods are not orthologous to known LSTs of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Reuse of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.


Assuntos
Crustáceos , Sulfotransferases , Animais , Sulfotransferases/metabolismo , Sulfotransferases/genética , Crustáceos/enzimologia , Crustáceos/genética , Crustáceos/metabolismo , Filogenia , Evolução Molecular , Luminescência
2.
Artigo em Inglês | MEDLINE | ID: mdl-38283949

RESUMO

We present the complete genome sequences of seven species of sea slugs. Illumina sequencing was performed on tissue from wild-collected museum specimens. The reads were assembled using a de novo method followed by a finishing step. The raw and assembled data are publicly available via Genbank.

3.
BMC Biol ; 22(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233809

RESUMO

BACKGROUND: How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS: The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS: Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.


Assuntos
Gastrópodes , Animais , Gastrópodes/genética , Filogenia , Evolução Molecular , Moluscos/genética , Cromossomos , Fenótipo , Expressão Gênica
4.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37090632

RESUMO

Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii , transfer sulfate in vivo to the luciferin substrate, vargulin. We find luciferin sulfotransferases of ostracods are not orthologous to known luciferin sulfotransferases of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Re-use of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.

5.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014205

RESUMO

How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum has long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. The final assembled and filtered Berghia genome is comparable to other high quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes), and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.

6.
R Soc Open Sci ; 10(3): 220939, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36998763

RESUMO

Platyhelminthes (flatworms) are a diverse invertebrate phylum useful for exploring life-history evolution. Within Platyhelminthes, only two clades develop through a larval stage: free-living polyclads and parasitic neodermatans. Neodermatan larvae are considered evolutionarily derived, whereas polyclad larvae are hypothesized to be ancestral due to ciliary band similarities among polyclad and other spiralian larvae. However, larval evolution has been challenging to investigate within polyclads due to low support for deeper phylogenetic relationships. To investigate polyclad life-history evolution, we generated transcriptomic data for 21 species of polyclads to build a well-supported phylogeny for the group. The resulting tree provides strong support for deeper nodes, and we recover a new monophyletic clade of early branching cotyleans. We then used ancestral state reconstructions to investigate ancestral modes of development within Polycladida and more broadly within flatworms. In polyclads, we were unable to reconstruct the ancestral state of deeper nodes with significant support because early branching clades show diverse modes of development. This suggests a complex history of larval evolution in polyclads that likely includes multiple losses and/or multiple gains. However, our ancestral state reconstruction across a previously published platyhelminth phylogeny supports a direct developing prorhynchid/polyclad ancestor, which suggests that a larval stage in the life cycle evolved along the polyclad stem lineage or within polyclads.

7.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993573

RESUMO

Molluscs are one of the most morphologically diverse clades of metazoans, exhibiting an immense diversification of calcium carbonate structures, such as the shell. Biomineralization of the calcified shell is dependent on shell matrix proteins (SMPs). While SMP diversity is hypothesized to drive molluscan shell diversity, we are just starting to unravel SMP evolutionary history and biology. Here we leveraged two complementary model mollusc systems, Crepidula fornicata and Crepidula atrasolea , to determine the lineage-specificity of 185 Crepidula SMPs. We found that 95% of the adult C. fornicata shell proteome belongs to conserved metazoan and molluscan orthogroups, with molluscan-restricted orthogroups containing half of all SMPs in the shell proteome. The low number of C. fornicata -restricted SMPs contradicts the generally-held notion that an animal’s biomineralization toolkit is dominated by mostly novel genes. Next, we selected a subset of lineage-restricted SMPs for spatial-temporal analysis using in situ hybridization chain reaction (HCR) during larval stages in C. atrasolea . We found that 12 out of 18 SMPs analyzed are expressed in the shell field. Notably, these genes are present in 5 expression patterns, which define at least three distinct cell populations within the shell field. These results represent the most comprehensive analysis of gastropod SMP evolutionary age and shell field expression patterns to date. Collectively, these data lay the foundation for future work to interrogate the molecular mechanisms and cell fate decisions underlying molluscan mantle specification and diversification.

8.
Syst Biol ; 72(2): 264-274, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35984328

RESUMO

Although the diversity, beauty, and intricacy of sexually selected courtship displays command the attention of evolutionists, the longevity of these traits in deep time is poorly understood. Population-based theory suggests sexual selection could either lower or raise extinction risk, resulting in high or low persistence of lineages with sexually selected traits. Furthermore, empirical studies that directly estimate the longevity of sexually selected traits are uncommon. Sexually selected signals-including bioluminescent courtship-originated multiple times during evolution, allowing the empirical study of their longevity after careful phylogenetic and divergence time analyses. Here, we estimate the first transcriptome-based molecular phylogeny and divergence times of Cypridinidae. We report extreme longevity of bioluminescent courtship, a trait important in mate choice and probably under sexual selection. Our relaxed-clock estimates of divergence times coupled with stochastic character mapping show luminous courtship evolved only once in Cypridinidae-in a Sub-Tribe, we name Luxorina-at least 151 millions of years ago from cypridinid ancestors that used bioluminescence only in antipredator displays, defining a Tribe we name Luminini. This time-calibrated molecular phylogeny of cypridinids will serve as a foundation for integrative and comparative studies on the biochemistry, molecular evolution, courtship, diversification, and ecology of cypridinid bioluminescence. The persistence of luminous courtship for hundreds of millions of years suggests that sexual selection did not cause a rapid loss of associated traits, and that rates of speciation within the group exceeded extinction risk, which may contribute to the persistence of a diverse clade of signaling species. [Ancestral state reconstruction; Biodiversity; co-option; divergence time estimates; macroevolution; Ostracoda; phylogenomics; sexual selection.].


Assuntos
Corte , Crustáceos , Animais , Filogenia , Crustáceos/genética , Ecologia , Biodiversidade
9.
Integr Org Biol ; 4(1): obac030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36089995

RESUMO

Sexual systems vary greatly across molluscs. This diversity includes simultaneous hermaphroditism, with both sexes functional at the same time. Most nudibranch molluscs are thought to be simultaneous hermaphrodites, but detailed studies of reproductive development and timing remain rare as most species cannot be cultured in the lab. The aeolid nudibranch, Berghia stephanieae, is one such species that can be cultured through multiple generations on the benchtop. We studied B. stephanieae reproductive timing to establish when animals first exchange sperm and how long sperm can be stored. We isolated age- and size-matched individuals at sequential timepoints to learn how early individuals can exchange sperm. Individuals isolated at 10 weeks post initial feeding (wpf; ∼13 weeks postlaying [wpl]) can produce fertilized eggs. This is 6 weeks before animals first lay egg masses, indicating that sperm exchange occurs well before individuals are capable of laying eggs. Our results indicate that male gonads become functional for animals between 6 mm (∼6 wpf, ∼9 wpl) and 9 mm (∼12 wpf, ∼15 wpl) in length. That is much smaller (and sooner) than the size (and age) of individuals at first laying (12-19 mm; ∼16 wpf, ∼19 wpl), indicating that male and female functions do not develop simultaneously. We also tracked the number of fertilized eggs in each egg mass, which remained steady for the first 10-15 egg masses, followed by a decline to near-to-no fertilization. This dataset provides insights into the precise timing of the onset of functionality of the male and female reproductive systems in B. stephanieae. These data contribute to a broader understanding of reproductive development and the potential for understanding the evolution of diverse sexual systems in molluscs.


Traduit par Maryna Lesoway et Hereroa JohnstonLes stratégies de reproduction sont énormément variables chez les mollusques. Cette diversité inclut les hermaphrodites simultanés pouvant être mâle et femelle à la fois. La plupart des mollusques nudibranches sont considérés être des hermaphrodites simultanés, mais les études détaillées du développement reproductif restent rares, car la plupart des nudibranches ne peuvent pas être cultivés en laboratoire. Le nudibranche aeolid, Berghia stephanieae, est l'une des rares espèces pouvant être facilement cultivées sur plusieurs générations sur une paillasse de laboratoire. On a étudié le développement temporel reproductif de B. stephanieae dans le but d'établir à quel moment les individus font leurs premiers échanges de sperme et pour combien de temps ce dernier est gardé. Pour cela des individus ont été isolés en fonction de leur âge et de leurs tailles de manière séquentielle au cours de leurs développement afin de déterminer les premiers échanges de sperme.. Les individus isolés 10 semaines après avoir commencé de manger (∼13 semaines après avoir été pondu) sont capables de produire des œufs fertilisés. Cela se produisant 6 semaines avant que ces individus ne soient capables de déposer des masses d'œufs fécondés, indiquant que l'échange de sperme a eu lieu bien avant que ces individus aient la capacité de pondre des œufs. Nos résultats indiquent que la gonade mâle devient fonctionnelle quand les individus mesurent entre 6 mm et 9 mm de longueur. Par contraste, ces individus ne pondent pas d'œufs avant de mesurer 12 à 19 mm de longueur, indiquant que les fonctions mâles et femelles ne commencent pas en même temps. De plus, on a compté le nombre d'œufs fécondés par masse d'œufs, ce dernier restant inchangé pour les premières 10 à 15 masses d'œufs mais cela s'est suivi par un déclin rapide aboutissant à zéro œuf fécondé par masse d'œuf. Les résultats présentés ici fournissent des informations précises à propos du début du fonctionnement des systèmes reproductifs mâle et femelle chez B. stephanieae. Ces données contribuent à une compréhension approfondie du développement reproductif avec le potentiel d'une meilleure compréhension de l'évolution des diverses systèmes de reproductions.


Traducción por Daniel Escobar-CamachoLos sistemas sexuales varían ampliamente entre los moluscos. Esta diversidad incluye el hermafroditismo simultáneo, ambos sexos funcionales al mismo tiempo. Se cree que la mayoría de los moluscos nudibranquios son hermafroditas simultáneos, pero los estudios detallados del desarrollo reproductivo y su sincronización temporal son raros ya que la mayoría de las especies no se pueden mantener en el laboratorio. El nudibranquio eólido, Berghia stephanieae, es una especie que se puede mantener en cautiverio durante varias generaciones en condiciones de laboratorio. En este estudio, se analizó la sincronización del estado reproductivo de B. stephanieae para establecer el momento en el cual los animales intercambian esperma por primera vez y la duración de cuánto tiempo se puede almacenar el esperma. Para aprender cómo los individuos juveniles intercambian esperma, aislamos individuos de la misma edad y tamaño, en diferentes puntos de tiempo en una secuencia temporal. Se pudo observar que los individuos aislados a las 10 semanas, después de la primera alimentación (wpf; ∼13 semanas después de la puesta, wpl), pueden producir huevos fertilizados. Esto es 6 semanas antes de que los animales desoven masas de óvulos por primera vez, lo cual sugiere que el intercambio de esperma ocurre mucho antes de que los individuos sean capaces de desovar óvulos. Nuestros resultados indican que las gónadas masculinas se vuelven funcionales para animales de entre 6 mm (∼6 wpf, ∼9 wpl) y 9 mm (∼12 wpf, ∼15 wpl) de longitud. Este tamaño es más pequeño (y más temprano) que el tamaño (y la edad) de los individuos en su primera puesta de huevos (12­19 mm; ∼16 wpf, ∼19 wpl), lo que indica que la funcionalidad de machos y hembras no se desarrollan simultáneamente. También analizamos la cantidad de huevos fertilizados en cada masa de huevos, que se mantuvo constante durante las primeras 10 a 15 masas de huevos, seguido de una disminución de fertilización hasta casi ser nula. Estos datos proporcionan información sobre el momento preciso del inicio de la funcionalidad de los sistemas reproductivos masculino y femenino en B. stephanieae, y contribuyen a una comprensión más amplia del desarrollo reproductivo y la evolución de los diversos sistemas sexuales en los moluscos.

10.
Front Zool ; 19(1): 16, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436919

RESUMO

BACKGROUND: Intracellular sequestration requires specialized cellular and molecular mechanisms allowing a predator to retain and use specific organelles that once belonged to its prey. Little is known about how common cellular mechanisms, like phagocytosis, can be modified to selectively internalize and store foreign structures. One form of defensive sequestration involves animals that sequester stinging organelles (nematocysts) from their cnidarian prey. While it has been hypothesized that nematocysts are identified by specialized phagocytic cells for internalization and storage, little is known about the cellular and developmental mechanisms of this process in any metazoan lineage. This knowledge gap is mainly due to a lack of genetically tractable model systems among predators and their cnidarian prey. RESULTS: Here, we introduce the nudibranch Berghia stephanieae as a model system to investigate the cell, developmental, and physiological features of nematocyst sequestration selectivity. We first show that B. stephanieae, which feeds on Exaiptasia diaphana, selectively sequesters nematocysts over other E. diaphana tissues found in their digestive gland. Using confocal microscopy, we document that nematocyst sequestration begins shortly after feeding and prior to the formation of the appendages (cerata) where the organ responsible for sequestration (the cnidosac) resides in adults. This finding is inconsistent with previous studies that place the formation of the cnidosac after cerata emerge. Our results also show, via live imaging assays, that both nematocysts and dinoflagellates can enter the nascent cnidosac structure. This result indicates that selectivity for nematocysts occurs inside the cnidosac in B. stephanieae, likely in the cnidophage cells themselves. CONCLUSIONS: Our work highlights the utility of B. stephanieae for future research, because: (1) this species can be cultured in the laboratory, which provides access to all developmental stages, and (2) the transparency of early juveniles makes imaging techniques (and therefore cell and molecular assays) feasible. Our results pave the way for future studies using live imaging and targeted gene editing to identify the molecular mechanisms involved in nematocyst sequestration. Further studies of nematocyst sequestration in B. stephanieae will also allow us to investigate how common cellular mechanisms like phagocytosis can be modified to selectively internalize and store foreign structures.

11.
BMC Ecol Evol ; 21(1): 226, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963462

RESUMO

BACKGROUND: The soft-bodied cladobranch sea slugs represent roughly half of the biodiversity of marine nudibranch molluscs on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as targets for drug discovery), the evolutionary history of cladobranch sea slugs is not yet fully understood. RESULTS: To enlarge the current knowledge on the phylogenetic relationships, we generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa (Berthella plumula and Polycera quadrilineata). We complemented our taxon sampling with previously published transcriptome data, resulting in a final data set covering 56 species from all but one accepted cladobranch superfamilies. We assembled all transcriptomes using six different assemblers, selecting those assemblies that provided the largest amount of potentially phylogenetically informative sites. Quality-driven compilation of data sets resulted in four different supermatrices: two with full coverage of genes per species (446 and 335 single-copy protein-coding genes, respectively) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximal statistical support for all major splits and phylogenetic relationships at the family level. Besides the questionable position of Noumeaella rubrofasciata, rendering the Facelinidae as polyphyletic, the only notable discordance between the inferred trees is the position of Embletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal. CONCLUSIONS: Our data matrices and the inferred trees can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The placement of E. pulchra, however, proves challenging, even with large data sets and various optimization strategies. Moreover, quartet mapping results show that confounding signal present in the data is sufficient to explain the inferred position of E. pulchra, again leaving its phylogenetic position as an enigma.


Assuntos
Gastrópodes , Animais , Aplysia/genética , Ecossistema , Gastrópodes/genética , Humanos , Moluscos/genética , Filogenia , Transcriptoma/genética
12.
Bioinformatics ; 37(18): 2848-2857, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33792639

RESUMO

MOTIVATION: Microbial gene catalogs are data structures that organize genes found in microbial communities, providing a reference for standardized analysis of the microbes across samples and studies. Although gene catalogs are commonly used, they have not been critically evaluated for their effectiveness as a basis for metagenomic analyses. RESULTS: As a case study, we investigate one such catalog, the Integrated Gene Catalog (IGC), however, our observations apply broadly to most gene catalogs constructed to date. We focus on both the approach used to construct this catalog and on its effectiveness when used as a reference for microbiome studies. Our results highlight important limitations of the approach used to construct the IGC and call into question the broad usefulness of gene catalogs more generally. We also recommend best practices for the construction and use of gene catalogs in microbiome studies and highlight opportunities for future research. AVAILABILITY AND IMPLEMENTATION: All supporting scripts for our analyses can be found on GitHub: https://github.com/SethCommichaux/IGC.git. The supporting data can be downloaded from: https://obj.umiacs.umd.edu/igc-analysis/IGC_analysis_data.tar.gz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenoma , Microbiota , Microbiota/genética , Metagenômica
13.
Sci Rep ; 10(1): 10443, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591605

RESUMO

Bioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Laboratory culture of bioluminescent organisms from diverse taxonomic groups is important for determining the biosynthetic pathways of bioluminescent substrates, which may lead to new tools for biotechnology and biomedicine. Some bioluminescent groups may be cultured, including some cnidarians, ctenophores, and brittle stars, but those use luminescent substrates (luciferins) obtained from their diets, and therefore are not informative for determination of the biosynthetic pathways of the luciferins. Other groups, including terrestrial fireflies, do synthesize their own luciferin, but culturing them is difficult and the biosynthetic pathway for firefly luciferin remains unclear. An additional independent origin of endogenous bioluminescence is found within ostracods from the family Cypridinidae, which use their luminescence for defense and, in Caribbean species, for courtship displays. Here, we report the first complete life cycle of a luminous ostracod (Vargula tsujii Kornicker & Baker, 1977, the California Sea Firefly) in the laboratory. We also describe the late-stage embryogenesis of Vargula tsujii and discuss the size classes of instar development. We find embryogenesis in V. tsujii ranges from 25-38 days, and this species appears to have five instar stages, consistent with ontogeny in other cypridinid lineages. We estimate a complete life cycle at 3-4 months. We also present the first complete mitochondrial genome for Vargula tsujii. Bringing a luminous ostracod into laboratory culture sets the stage for many potential avenues of study, including learning the biosynthetic pathway of cypridinid luciferin and genomic manipulation of an autogenic bioluminescent system.


Assuntos
Evolução Biológica , Crustáceos/metabolismo , Luminescência , Animais , Aquicultura/métodos , Organismos Aquáticos/metabolismo , California , Crustáceos/embriologia , Crustáceos/genética , Crustáceos/crescimento & desenvolvimento , Feminino , Genética Populacional , Genoma/genética , Genoma Mitocondrial/genética , Estágios do Ciclo de Vida , Masculino , Mitocôndrias/genética , Sequenciamento Completo do Genoma
14.
Front Zool ; 15: 43, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473719

RESUMO

BACKGROUND: A number of shelled and shell-less gastropods are known to use multiple defensive mechanisms, including internally generated or externally obtained biochemically active compounds and structures. Within Nudipleura, nudibranchs within Cladobranchia possess such a special defense: the ability to sequester cnidarian nematocysts - small capsules that can inject venom into the tissues of other organisms. This ability is distributed across roughly 600 species within Cladobranchia, and many questions still remain in regard to the comparative morphology and evolution of the cnidosac - the structure that houses sequestered nematocysts (called kleptocnides). In this paper, we describe cnidosac morphology across the main groups of Cladobranchia in which it occurs, and place variation in its structure in a phylogenetic context to better understand the evolution of nematocyst sequestration. RESULTS: Overall, we find that the length, size and structure of the entrance to the cnidosac varies more than expected based on previous work, as does the structure of the exit, the musculature surrounding the cnidosac, and the position and orientation of the kleptocnides. The sequestration of nematocysts has originated at least twice within Cladobranchia based on the phylogeny presented here using 94 taxa and 409 genes. CONCLUSIONS: The cnidosac is not homologous to cnidosac-like structures found in Hancockiidae. Additionally, the presence of a sac at the distal end of the digestive gland may have originated prior to the sequestration of nematocysts. This study provides a more complete picture of variation in, and evolution of, morphological characters associated with nematocyst sequestration in Cladobranchia.

15.
BMC Evol Biol ; 17(1): 221, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29073890

RESUMO

BACKGROUND: The impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA-Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales. RESULTS: In the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia). Ancestral state reconstruction analyses supported a cladobranchian ancestor with a preference for Hydrozoa and show that the few transitions identified only occur from lineages that prey on Hydrozoa to those that feed on other types of prey. CONCLUSIONS: There is strong phylogenetic correlation with prey preference within Cladobranchia, suggesting that prey type specialization within this group has inertia. Shifts between different types of prey have occurred rarely throughout the evolution of Cladobranchia, indicating that this may not have been an important driver of the diversity within this group.


Assuntos
Evolução Biológica , Cnidários/genética , Cadeia Alimentar , Gastrópodes/genética , Animais , Cnidários/classificação , Gastrópodes/classificação , Gastrópodes/fisiologia , Filogenia , Análise de Sequência de RNA
16.
R Soc Open Sci ; 2(9): 150196, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26473045

RESUMO

Cladobranchia (Gastropoda: Nudibranchia) is a diverse (approx. 1000 species) but understudied group of sea slug molluscs. In order to fully comprehend the diversity of nudibranchs and the evolution of character traits within Cladobranchia, a solid understanding of evolutionary relationships is necessary. To date, only two direct attempts have been made to understand the evolutionary relationships within Cladobranchia, neither of which resulted in well-supported phylogenetic hypotheses. In addition to these studies, several others have addressed some of the relationships within this clade while investigating the evolutionary history of more inclusive groups (Nudibranchia and Euthyneura). However, all of the resulting phylogenetic hypotheses contain conflicting topologies within Cladobranchia. In this study, we address some of these long-standing issues regarding the evolutionary history of Cladobranchia using RNA-Seq data (transcriptomes). We sequenced 16 transcriptomes and combined these with four transcriptomes from the NCBI Sequence Read Archive. Transcript assembly using Trinity and orthology determination using HaMStR yielded 839 orthologous groups for analysis. These data provide a well-supported and almost fully resolved phylogenetic hypothesis for Cladobranchia. Our results support the monophyly of Cladobranchia and the sub-clade Aeolidida, but reject the monophyly of Dendronotida.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA