RESUMO
Introduction: Opioid drugs are potent analgesics that mimic the endogenous opioid peptides, endorphins and enkephalins, by activating the µ-opioid receptor. Opioid use is limited by side effects, including significant risk of opioid use disorder. Improvement of the effect/side effect profile of opioid medications is a key pursuit of opioid research, yet there is no consensus on how to achieve this goal. One hypothesis is that the degree of arrestin-3 recruitment to the µ-opioid receptor impacts therapeutic utility. However, it is not clear whether increased or decreased interaction of the µ-opioid receptor with arrestin-3 would reduce compulsive drug-seeking. Methods: We utilized three genotypes of mice with varying abilities to recruit arrestin-3 to the µ-opioid receptor in response to morphine in a novel longitudinal operant self-administration model. We also created a quantitative method to define compulsivity in drug-seeking based on a multi-variate analysis of several operant response variables. Results: We demonstrate that arrestin-3 knockout and wild type mice have highly variable drug-seeking behavior with few genotype differences. In contrast, in mice where the µ-opioid receptor strongly recruits arrestin-3, drug-seeking behavior is much less varied. We found that mice lacking arrestin-3 were more likely to meet the criteria for compulsivity whereas mice with enhanced arrestin-3 recruitment did not develop a compulsive phenotype. Conclusion: These experiments show that a lack of arrestin-3 is not protective against the abuse liability of morphine in an operant self-administration context. Our data also suggest that opioids that engage both G protein and arrestin-3, recapitulating the endogenous signaling pattern, will reduce abuse liability.
RESUMO
It is well established that dopamine neurons of the ventral tegmental area (VTA) play a critical role in reward and aversion as well as pathologies including drug dependence and addiction. The distinct effects of acute and chronic opioid exposure have been previously characterized at VTA synapses. Recent work suggests that distinct VTA projections that target the medial and lateral shell of the nucleus accumbens (NAc), may play opposing roles in modulating behavior. It is possible that these two anatomically and functionally distinct pathways also have disparate roles in opioid reward, tolerance, and withdrawal in the brain. In this study we monitored dopamine release in the medial or lateral shell of the NAc of male mice during a week-long morphine treatment paradigm. We measured dopamine release in response to an intravenous morphine injection both acutely and following a week of repeated morphine. We also measured dopamine in response to a naloxone injection both prior to and following repeated morphine treatment. Morphine induced a transient increase in dopamine in the medial NAc shell that was much larger than the slower rise observed in the lateral shell. Surprisingly, chronic morphine treatment induced a sensitization of the medial dopamine response to morphine that opposed a diminished response observed in the saline-treated control group. This study expands on our current understanding of the medial NAc shell as hub of opioid-induced dopamine fluctuation. It also highlights the need for future opioid studies to appreciate the heterogeneity of dopamine neurons. Significance Statement: The social and economic consequences of the opioid epidemic are tragic and far-reaching. Yet, opioids are indisputably necessary in clinical settings where they remain the most useful treatment for severe pain. To combat this crisis, we must improve our understanding of opioid function in the brain, particularly the neural mechanisms that underlie opioid dependence and addictive behaviors. This study uses fiber photometry to examine dopamine changes that occur in response to repeated morphine, and morphine withdrawal, at multiple stages of a longitudinal opioid-dependence paradigm. We reveal key differences in how dopamine levels respond to opioid administration in distinct sub-regions of the ventral striatum and lay a foundation for future opioid research that appreciates our contemporary understanding of the dopamine system.
RESUMO
Iberdomide is a potent cereblon E3 ligase modulator (CELMoD agent) with promising efficacy and safety as a monotherapy or in combination with other therapies in patients with relapsed/refractory multiple myeloma (RRMM). Using a custom mass cytometry panel designed for large-scale immunophenotyping of the bone marrow tumor microenvironment (TME), we demonstrate significant increases of effector T and natural killer (NK) cells in a cohort of 93 patients with multiple myeloma (MM) treated with iberdomide, correlating findings to disease characteristics, prior therapy, and a peripheral blood immune phenotype. Notably, changes are dose dependent, associated with objective response, and independent of prior refractoriness to MM therapies. This suggests that iberdomide broadly induces innate and adaptive immune activation in the TME, contributing to its antitumor efficacy. Our approach establishes a strategy to study treatment-induced changes in the TME of patients with MM and, more broadly, patients with cancer and establishes rational combination strategies for iberdomide with immune-enhancing therapies to treat MM.
Assuntos
Medula Óssea , Imunidade Inata , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Imunidade Inata/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Medula Óssea/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Feminino , Masculino , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Pessoa de Meia-Idade , Idoso , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/tratamento farmacológicoRESUMO
Opioid drugs are potent analgesics that mimic the endogenous opioid peptides, endorphins and enkephalins, by activating the µ-opioid receptor. Opioid use is limited by side effects, including significant risk of opioid use disorder. Improvement of the effect/side effect profile of opioid medications is a key pursuit of opioid research, yet there is no consensus on how to achieve this goal. One hypothesis is that the degree of arrestin-3 recruitment to the µ-opioid receptor impacts therapeutic utility. However, it is not clear whether increased or decreased interaction of the µ-opioid receptor with arrestin-3 would reduce compulsive drug-seeking. To examine this question, we utilized three genotypes of mice with varying abilities to recruit arrestin-3 to the µ-opioid receptor in response to morphine in a novel longitudinal operant self-administration model. We demonstrate that arrestin-3 knockout and wild type mice have highly variable drug-seeking behavior with few genotype differences. In contrast, in mice where the µ-opioid receptor strongly recruits arrestin-3, drug-seeking behavior is much less varied. We created a quantitative method to define compulsivity in drug-seeking and found that mice lacking arrestin-3 were more likely to meet the criteria for compulsivity whereas mice with enhanced arrestin-3 recruitment did not develop a compulsive phenotype. Our data suggest that opioids that engage both G protein and arrestin-3, recapitulating the endogenous signaling pattern, will reduce abuse liability.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Mieloma Múltiplo , SARS-CoV-2 , Vacinação , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , COVID-19/prevenção & controle , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos LongitudinaisRESUMO
The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.
Assuntos
Analgésicos Opioides , Transdução de Sinais , Humanos , Analgésicos Opioides/efeitos adversos , Tolerância a MedicamentosRESUMO
OBJECTIVE: To describe determinants of persisting humoral and cellular immune response to the second COVID-19 vaccination among patients with myeloma. METHODS: This is a prospective, observational study utilising the RUDYstudy.org platform. Participants reported their second and third COVID-19 vaccination dates. Myeloma patients had an Anti-S antibody level sample taken at least 21 days after their second vaccination and a repeat sample before their third vaccination. RESULTS: 60 patients provided samples at least 3 weeks (median 57.5 days) after their second vaccination and before their third vaccination (median 176.0 days after second vaccine dose). Low Anti-S antibody levels (<50 IU/mL) doubled during this interval (p = .023) and, in the 47 participants with T-spot data, there was a 25% increase negative T-spot tests (p = .008). Low anti-S antibody levels prior to the third vaccination were predicted by lower Anti-S antibody level and negative T-spot status after the second vaccine. Independent determinants of a negative T-spot included increasing age, previous COVID infection, high CD4 count and lower percentage change in Anti-S antibody levels. CONCLUSIONS: Negative T-spot results predict low Anti-S antibody levels (<50 IU/mL) following a second COVID-19 vaccination and a number of biomarkers predict T cell responses in myeloma patients.
Assuntos
COVID-19 , Mieloma Múltiplo , Humanos , Linfócitos T , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Mieloma Múltiplo/terapia , Anticorpos , Vacinação , Anticorpos Antivirais , Imunidade CelularRESUMO
Multiple myeloma (MM) is a plasma cell malignancy characterised by aberrant production of immunoglobulins requiring survival mechanisms to adapt to proteotoxic stress. We here show that glutamyl-prolyl-tRNA synthetase (GluProRS) inhibition constitutes a novel therapeutic target. Genomic data suggest that GluProRS promotes disease progression and is associated with poor prognosis, while downregulation in MM cells triggers apoptosis. We developed NCP26, a novel ATP-competitive ProRS inhibitor that demonstrates significant anti-tumour activity in multiple in vitro and in vivo systems and overcomes metabolic adaptation observed with other inhibitor chemotypes. We demonstrate a complex phenotypic response involving protein quality control mechanisms that centers around the ribosome as an integrating hub. Using systems approaches, we identified multiple downregulated proline-rich motif-containing proteins as downstream effectors. These include CD138, transcription factors such as MYC, and transcription factor 3 (TCF3), which we establish as a novel determinant in MM pathobiology through functional and genomic validation. Our preclinical data therefore provide evidence that blockade of prolyl-aminoacylation evokes a complex pro-apoptotic response beyond the canonical integrated stress response and establish a framework for its evaluation in a clinical setting.
Assuntos
Aminoacil-tRNA Sintetases , Mieloma Múltiplo , Humanos , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismoRESUMO
A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFß stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE: We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.
Assuntos
Medula Óssea , Neoplasias Hematológicas , Humanos , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Organoides , Microambiente TumoralRESUMO
Large-scale analyses of genomic data from patients with newly diagnosed multiple myeloma (ndMM) have been undertaken, however, large-scale analysis of relapsed/refractory MM (rrMM) has not been performed. We hypothesize that somatic variants chronicle the therapeutic exposures and clonal structure of myeloma from ndMM to rrMM stages. We generated whole-genome sequencing (WGS) data from 418 tumors (386 patients) derived from 6 rrMM clinical trials and compared them with WGS from 198 unrelated patients with ndMM in a population-based case-control fashion. We identified significantly enriched events at the rrMM stage, including drivers (DUOX2, EZH2, TP53), biallelic inactivation (TP53), noncoding mutations in bona fide drivers (TP53BP1, BLM), copy number aberrations (CNAs; 1qGain, 17pLOH), and double-hit events (Amp1q-ISS3, 1qGain-17p loss-of-heterozygosity). Mutational signature analysis identified a subclonal defective mismatch repair signature enriched in rrMM and highly active in high mutation burden tumors, a likely feature of therapy-associated expanding subclones. Further analysis focused on the association of genomic aberrations enriched at different stages of resistance to immunomodulatory agent (IMiD)-based therapy. This analysis revealed that TP53, DUOX2, 1qGain, and 17p loss-of-heterozygosity increased in prevalence from ndMM to lenalidomide resistant (LENR) to pomalidomide resistant (POMR) stages, whereas enrichment of MAML3 along with immunoglobulin lambda (IGL) and MYC translocations distinguished POM from the LEN subgroup. Genomic drivers associated with rrMM are those that confer clonal selective advantage under therapeutic pressure. Their role in therapy evasion should be further evaluated in longitudinal patient samples, to confirm these associations with the evolution of clinical resistance and to identify molecular subsets of rrMM for the development of targeted therapies.
Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Oxidases Duais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Lenalidomida/uso terapêutico , Fatores Imunológicos/uso terapêutico , Dexametasona/uso terapêuticoRESUMO
Resistance to immunomodulatory drugs (IMiDs®) is a major cause of treatment failure, disease relapse and ultimately poorer outcomes in multiple myeloma (MM). In order to optimally deploy IMiDs and their newer derivates CRBN E3 ligase modulators (CELMoDs®) into future myeloma therapeutic regimens, it is imperative to understand the mechanisms behind the inevitable emergence of IMiD resistance. IMiDs bind and modulate Cereblon (CRBN), the substrate receptor of the CUL4CRBN E3 ubiquitin ligase, to target novel substrate proteins for ubiquitination and degradation. Most important of these are IKZF1 and IKZF3, key MM survival transcription factors which sustain the expression of myeloma oncogenes IRF4 and MYC. IMiDs directly target MM cell proliferation, but also stimulate T/NK cell activation by their CRBN-mediated effects, and therefore enhance anti-MM immunity. Thus, their benefits in myeloma are directed against tumor and immune microenvironment - and in considering the mechanisms by which IMiD resistance emerges, both these effects must be appraised. CRBN-dependent mechanisms of IMiD resistance, including CRBN genetic aberrations, CRBN protein loss and CRBN-substrate binding defects, are beginning to be understood. However, only a proportion of IMiD-resistant cases are related to CRBN and therefore additional mechanisms, which are currently less well described, need to be sought. These include resistance within the immune microenvironment. Here we review the existing evidence on both tumor and immune microenvironment mechanisms of resistance to IMiDs, pose important questions for future study, and consider how knowledge regarding resistance mechanism may be utilized to guide treatment decision making in the clinic.
RESUMO
The acquisition of a multidrug refractory state is a major cause of mortality in myeloma. Myeloma drugs that target the cereblon (CRBN) protein include widely used immunomodulatory drugs (IMiDs), and newer CRBN E3 ligase modulator drugs (CELMoDs), in clinical trials. CRBN genetic disruption causes resistance and poor outcomes with IMiDs. Here, we investigate alternative genomic associations of IMiD resistance, using large whole-genome sequencing patient datasets (n = 522 cases) at newly diagnosed, lenalidomide (LEN)-refractory and lenalidomide-then-pomalidomide (LEN-then-POM)-refractory timepoints. Selecting gene targets reproducibly identified by published CRISPR/shRNA IMiD resistance screens, we found little evidence of genetic disruption by mutation associated with IMiD resistance. However, we identified a chromosome region, 2q37, containing COP9 signalosome members COPS7B and COPS8, copy loss of which significantly enriches between newly diagnosed (incidence 5.5%), LEN-refractory (10.0%), and LEN-then-POM-refractory states (16.4%), and may adversely affect outcomes when clonal fraction is high. In a separate dataset (50 patients) with sequential samples taken throughout treatment, we identified acquisition of 2q37 loss in 16% cases with IMiD exposure, but none in cases without IMiD exposure. The COP9 signalosome is essential for maintenance of the CUL4-DDB1-CRBN E3 ubiquitin ligase. This region may represent a novel marker of IMiD resistance with clinical utility.
Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Lenalidomida/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismoRESUMO
The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Myeloma Intergroup conducted a workshop on Immune and Cellular Therapy in Multiple Myeloma on January 7, 2022. This workshop included presentations by basic, translational, and clinical researchers with expertise in plasma cell dyscrasias. Four main topics were discussed: platforms for myeloma disease evaluation, insights into pathophysiology, therapeutic target and resistance mechanisms, and cellular therapy for multiple myeloma. Here we provide a comprehensive summary of these workshop presentations.
Assuntos
Mieloma Múltiplo , Medula Óssea , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Humanos , Mieloma Múltiplo/terapiaRESUMO
PURPOSE: We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNA). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical FISH (translocations), multiplex ligation probe analysis (MLPA; CNAs), whole-genome sequencing (WGS; CNAs, mutations, translocations), or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS: Canonical immunoglobulin heavy chain translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for 1 patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2 = 0.969. Variant allele frequency (VAF) for 74 mutations were compared between sequencing and ddPCR with concordance of R2 = 0.9849. CONCLUSIONS: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost-effective, comprehensive, clinically actionable, and can be routinely deployed to assist risk stratification at diagnosis or posttreatment to guide sequencing of therapies.
Assuntos
Mieloma Múltiplo , Variações do Número de Cópias de DNA , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mutação , Translocação Genética , Sequenciamento Completo do GenomaRESUMO
INTRODUCTION: Radiogenomic analysis of patients being considered for liver resection is seldom performed in the clinic despite recent evidence indicating that quantitative MRI could improve posthepatectomy outcomes. Meanwhile, the increasingly accessible results from whole genome sequencing reporting on clinically actionable genetic biomarkers are yet to be fully integrated into the clinical care pathway. METHODS AND ANALYSIS: A prospective observational cohort study of up to 200 participants is planned, recruiting adults with primary or secondary liver cancer being considered for liver resection at Hampshire Hospitals NHS Foundation Trust. The data will be evaluated to address the primary endpoint to calculate the proportion of participants in which the results from whole genome sequencing would have resulted in a change in clinical management. Participants will be offered an additional non-invasive quantitative MRI scan prior to the operation and the impact of the imaging results on treatment decision-making will be evaluated. ETHICS AND DISSEMINATION: This study was reviewed by the NHS Health Research Authority and given favourable opinion by the Brighton and Sussex Research Ethics Committee (REC reference: 20/PR/0222). Research findings will be discussed with a patient and public involvement and engagement group, presented at relevant scientific conferences and published in open access journals. TRIAL REGISTRATION NUMBER: NCT04597710.
Assuntos
Neoplasias Hepáticas , Medicina de Precisão , Adulto , Estudos de Coortes , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/genética , Imageamento por Ressonância Magnética , Estudos Observacionais como Assunto , Estudos Prospectivos , Sequenciamento Completo do GenomaRESUMO
Immunomodulatory drugs (IMiDs), including lenalidomide and pomalidomide, are used in the routine treatment for multiple myeloma (MM) patients. Cereblon (CRBN) is the direct molecular target of IMiDs. While CRBN is not an essential gene for MM cell proliferation, the frequency of CRBN genetic aberrations, including mutation, copy number loss, and exon-10 (which includes a portion of the IMiD-binding domain) splicing, have been reported to incrementally increase in later-line patients. CRBN exon-10 splicing has also been shown to be associated with decreased progression-free survival in both newly diagnosed and relapsed refractory MM patients. Although we did not find significant general splicing defects among patients with CRBN exon-10 splice variant when compared to those expressing the full-length transcript, we identified upregulated TNFA signaling via NFKB, inflammatory response, and IL-10 signaling pathways in patients with exon-10 splice variant across various data sets-all potentially promoting tumor growth via chronic growth signals. We examined master regulators that mediate transcriptional programs in CRBN exon-10 splice variant patients and identified BATF, EZH2, and IKZF1 as the key candidates across the four data sets. Upregulated downstream targets of BATF, EZH2, and IKZF1 are components of TNFA signaling via NFKB, IL2/STAT5 signaling pathways, and IFNG response pathways. Previously, BATF-mediated transcriptional regulation was associated with venetoclax sensitivity in MM. Interestingly, we found that an EZH2 sensitivity gene expression signature also correlated with high BATF or venetoclax sensitivity scores in these tumors. Together, these data provide a rationale for investigating EZH2 inhibitors or venetoclax in combination with the next generation CRBN-targeting agents, such as CELMoDs, for patients overexpressing the CRBN exon-10 splice variant.
RESUMO
Myeloma patients frequently respond poorly to bacterial and viral vaccination. A few studies have reported poor humoral immune responses in myeloma patients to COVID-19 vaccination. Using a prospective study of myeloma patients in the UK Rudy study cohort, we assessed humoral and interferon gamma release assay (IGRA) cellular immune responses to COVID-19 vaccination post second COVID-19 vaccine administration. We report data from 214 adults with myeloma (n = 204) or smouldering myeloma (n = 10) who provided blood samples at least three weeks after second vaccine dose. Positive Anti-spike antibody levels (> 50 iu/ml) were detected in 189/203 (92.7%), positive IGRA responses were seen in 97/158 (61.4%) myeloma patients. Only 10/158 (6.3%) patients were identified to have both a negative IGRA and negative anti-spike protein antibody response. In all, 95/158 (60.1%) patients produced positive results for both anti-spike protein serology and IGRA. After adjusting for disease severity and myeloma therapy, poor humoral immune response was predicted by male gender. Predictors of poor IGRA included anti-CD38/anti-BCMA (B-cell maturation antigen) therapy and Pfizer-BioNTech vaccination. Further work is required to understand the clinical significance of divergent cellular response to vaccination.
Assuntos
COVID-19 , Mieloma Múltiplo , Adulto , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade Humoral , Masculino , Mieloma Múltiplo/terapia , Estudos Prospectivos , SARS-CoV-2 , Linfócitos T , VacinaçãoRESUMO
Novel biomarkers for tumour burden and bone disease are required to guide clinical management of plasma cell dyscrasias. Recently, bone turnover markers (BTMs) and Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) have been explored, although their role in the prospective assessment of multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) is unclear. Here, we conducted a pilot observational cohort feasibility study combining serum BTMs and DW-MRI in addition to standard clinical assessment. Fifty-five patients were recruited (14 MGUS, 15 smouldering MM, 14 new MM and 12 relapsed MM) and had DW-MRI and serum biomarkers (P1NP, CTX-1, ALP, DKK1, sclerostin, RANKL:OPG and BCMA) measured at baseline and 6-month follow-up. Serum sclerostin positively correlated with bone mineral density (r = 0.40-0.54). At baseline, serum BCMA correlated with serum paraprotein (r = 0.42) and serum DKK1 correlated with serum free light chains (r = 0.67); the longitudinal change in both biomarkers differed between International Myeloma Working Group (IMWG)-defined responders and non-responders. Myeloma Response Assessment and Diagnosis System (MY-RADS) scoring of serial DW-MRI correlated with conventional IMWG response criteria for measuring longitudinal changes in tumour burden. Overall, our pilot study suggests candidate radiological and serum biomarkers of tumour burden and bone loss in MM/MGUS, which warrant further exploration in larger cohorts to validate the findings and to better understand their clinical utility.