Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 106(24): 245002, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770577

RESUMO

In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

2.
Phys Rev Lett ; 94(10): 105002, 2005 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-15783491

RESUMO

Improved electron energy confinement in tokamak plasmas, related to internal transport barriers, has been linked to nonmonotonic current density profiles. This is difficult to prove experimentally since usually the current profiles evolve continuously and current injection generally requires significant input power. New experiments are presented, in which the inductive current is used to generate positive and negative current density perturbations in the plasma center, with negligible input power. These results demonstrate unambiguously for the first time that the electron confinement can be modified significantly solely by perturbing the current density profile.

3.
Phys Rev Lett ; 93(21): 215001, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15601020

RESUMO

Clear evidence is reported for the first time of a rapid localized reduction of core electron energy diffusivity during the formation of an electron internal-transport barrier. The transition occurs rapidly (approximately = 3 ms), during a slow (approximately = 200 ms) self-inductive evolution of the magnetic shear. This crucial observation, and the correlation of the transition with the time and location of the magnetic shear reversal, lend support to models attributing the reduced transport to the local properties of a zero-shear region, in contrast to models predicting a gradual reduction due to a weak or negative shear.

4.
Phys Rev Lett ; 86(8): 1530-3, 2001 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11290185

RESUMO

Current profile tailoring by electron cyclotron heating (ECH) and current drive (ECCD) is used to improve central electron energy confinement in the TCV tokamak. Counter-ECCD on axis alone achieves this goal in a transient manner only. A stable scenario is obtained by a two-step sequence of off-axis ECH, which stabilizes magnetohydrodynamics modes, and on-axis counter-ECCD, which generates a flat or inverted current profile. This high-confinement regime, with central temperatures up to 9 keV (at a normalized beta(N) approximately 0.6), has been sustained for the entire duration of the heating pulse, or over 200 electron energy confinement times and 5 current redistribution times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA