Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Proteome Res ; 23(5): 1725-1743, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636938

RESUMO

Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).


Assuntos
Proteínas de Bactérias , Proteoma , Proteômica , Treponema pallidum , Treponema pallidum/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espectrometria de Massas , Sífilis/microbiologia , Sífilis/metabolismo
3.
mSystems ; 8(5): e0049123, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37623324

RESUMO

IMPORTANCE: Pseudomonas aeruginosa is an important pathogen often associated with hospital-acquired infections and chronic lung infections in people with cystic fibrosis. P. aeruginosa possesses a wide array of intrinsic and adaptive mechanisms of antibiotic resistance, and the regulation of these mechanisms is complex. Label-free quantitative proteomics is a powerful tool to compare susceptible and resistant strains of bacteria and their responses to antibiotic treatments. Here we compare the proteomes of three isolates of P. aeruginosa with different antibiotic resistance profiles in response to five challenge conditions. We uncover unique and shared proteome changes for the widely used laboratory strain PAO1 and two isolates of the Liverpool epidemic strain of P. aeruginosa, LESlike1 and LESB58. Our data set provides insight into antibiotic resistance in clinically relevant Pseudomonas isolates and highlights proteins, including those with uncharacterized functions, which can be further investigated for their role in adaptive responses to antibiotic treatments.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Proteômica , Pseudomonas aeruginosa , Fibrose Cística/tratamento farmacológico , Antibacterianos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Proteoma
4.
Microbiol Spectr ; 10(3): e0102422, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35658710

RESUMO

Eight isolates of the Liverpool epidemic strain (LES) of Pseudomonas aeruginosa have previously been characterized using comparative genomics and preliminary phenotypic assays. Here, we extend the characterization of these clinically relevant P. aeruginosa isolates with planktonic and biofilm growth assays and analysis of antibiotic susceptibility for both planktonic and biofilm cultures. Laboratory strains PAO1 and PA14 were included as comparator strains. Antibiotic susceptibility to eight classes of antibiotics was determined. MICs were determined to measure susceptibility of planktonic cultures, and minimum biofilm eradication concentration (MBEC) assays were used to estimate levels of resistance during the production of biofilm. LES isolates had high levels of resistance compared with laboratory reference strains when grown planktonically (up to nine 2-fold dilutions higher), and resistance was increased in the biofilm mode of growth. Measurements of biofilm biomass in the MBEC assays showed that certain isolates often show increased biofilm biomass in the presence of antibiotics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen with high intrinsic antibiotic resistance. This resistance is typically increased in clinical isolates through adaptations to the host and production of small-colony variants (SCVs) and when P. aeruginosa forms biofilms, which are surface-attached communities that are protected by a self-produced matrix. Understanding the combination of SCVs, biofilm production, and the diversity of drug resistance phenotypes in clinical isolates can lead to improved treatments for P. aeruginosa infections.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Plâncton , Pseudomonas aeruginosa/genética
5.
J Biol Chem ; 298(2): 101560, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990713

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein's role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.


Assuntos
Alginatos , Periplasma , Polissacarídeo-Liases , Pseudomonas aeruginosa , Alginatos/química , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/genética , Ácidos Hexurônicos/química , Homeostase , Humanos , Periplasma/enzimologia , Periplasma/metabolismo , Polímeros/metabolismo , Polissacarídeo-Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo
6.
Proteomics Clin Appl ; 15(6): e2100062, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510773

RESUMO

PURPOSE: Comparative genomics and phenotypic assays have shown that antibiotic resistance profiles differ among clinical isolates of Pseudomonas aeruginosa and that genotype-phenotype associations are difficult to establish for resistance phenotypes based on these comparisons alone. EXPERIMENTAL DESIGN: Here, we used label-free quantitative proteomics to compare two isolates of the Liverpool Epidemic Strain (LES) of P. aeruginosa, LESlike1 and LESB58, and the common laboratory strain P. aeruginosa PAO1 to more accurately predict functional differences between strains. RESULTS: Our results show that the proteomes of the LES isolates are more similar to each other than to PAO1; however, a number of differences were observed in the abundance of proteins involved in quorum sensing, virulence, and antibiotic resistance, including in the comparison of LESlike1 and LESB58. Additionally, the proteomic data revealed a higher abundance of proteins involved in polymyxin and aminoglycoside resistance in LESlike1. Minimum inhibitory concentration assays showed that LESlike1 had up to 128-fold higher resistance to antibiotics from these classes. CONCLUSIONS: These findings provide an example of the ability of proteomic data to complement genotypic and phenotypic studies to understand resistance in clinical isolates. CLINICAL RELEVANCE: P. aeruginosa is a predominant pathogen in chronic lung infections in individuals with cystic fibrosis (CF). LES isolates are capable of transferring between CF patients and have been associated with increased hospital visits and antibiotic treatments.


Assuntos
Proteoma/análise , Proteômica/métodos , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Genômica , Humanos , Testes de Sensibilidade Microbiana , Polimixinas/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/genética , Virulência/genética
7.
Sci Rep ; 8(1): 12933, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154462

RESUMO

In Escherichia coli, formation of new cells is mediated by the elongasome and divisome that govern cell elongation and septation, respectively. Proper transition between these events is essential to ensure viable progeny are produced; however, the components of each complex responsible for transmission of the cell signal to shift from elongation to septation are unclear. Recently, a region within the N-terminal domain of the essential divisome protein FtsK (FtsKN) was identified that points to a key role for FtsK as a checkpoint of cell envelope remodeling during division. Here, we used site-specific in vivo UV cross-linking to probe the periplasmic loops of FtsKN for protein interaction partners critical for FtsKN function. Mass spectrometry analysis of five unique FtsKN periplasmic cross-links revealed a network of potential FtsKN interactors, one of which included the septal peptidoglycan binding protein rare lipoprotein A (RlpA). This protein was further verified as a novel interaction partner of FtsKN by an in vitro pull-down assay. Deletion of rlpA from an FtsK temperature-sensitive E. coli strain partially restored cell growth and largely suppressed cellular filamentation compared to the wild-type strain. This suggests that interaction with RlpA may be critical in suppressing septation until proper assembly of the divisome.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Periplasma/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Lipoproteínas/genética , Proteínas de Membrana/genética , Periplasma/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-28848007

RESUMO

Increasing antibiotic resistance among pathogenic bacterial species is a serious public health problem and has prompted research examining the antibacterial effects of alternative compounds and novel treatment strategies. Compounding this problem is the ability of many pathogenic bacteria to form biofilms during chronic infections. Importantly, these communities are often recalcitrant to antibiotic treatments that show effectiveness against acute infection. The antimicrobial properties of silver have been known for decades, but recently silver and silver-containing compounds have seen renewed interest as antimicrobial agents for treating bacterial infections. The goal of this study was to assess the ability of citrate-capped silver nanoparticles (AgNPs) of various sizes, alone and in combination with the aminoglycoside antibiotic tobramycin, to inhibit established Pseudomonas aeruginosa biofilms. Our results demonstrate that smaller 10-nm and 20-nm AgNPs were more effective at synergistically potentiating the activity of tobramycin. Visualization of biofilms treated with combinations of 10-nm AgNPs and tobramycin reveals that the synergistic bactericidal effect may be caused by disrupting cellular membranes. Minimum biofilm eradication concentration (MBEC) assays using clinical P. aeruginosa isolates shows that small AgNPs are more effective than larger AgNPs at inhibiting biofilms, but that the synergy effect is likely a strain-dependent phenomenon. These data suggest that small AgNPs synergistically potentiate the activity of tobramycin against P. aeruginosain vitro and may reveal a potential role for AgNP/antibiotic combinations in treating patients with chronic infections in a strain-specific manner.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Tobramicina/farmacologia , Biofilmes/crescimento & desenvolvimento , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA