Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab ; 140(1-2): 107715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37907381

RESUMO

Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.


Assuntos
Variação Genética , Doença de Depósito de Glicogênio Tipo II , Recém-Nascido , Humanos , Estados Unidos , Testes Genéticos/métodos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Genoma Humano , Genômica/métodos
2.
Front Genet ; 13: 1001154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246652

RESUMO

Purpose: The addition of Pompe disease (Glycogen Storage Disease Type II) to the Recommended Uniform Screening Panel in the United States has led to an increase in the number of variants of uncertain significance (VUS) and novel variants identified in the GAA gene. This presents a diagnostic challenge, especially in the setting of late-onset Pompe disease when symptoms are rarely apparent at birth. There is an unmet need for validated functional studies to aid in classification of GAA variants. Methods: We developed an in vitro mammalian cell expression and functional analysis system based on guidelines established by the Clinical Genome Resource (ClinGen) Sequence Variant Interpretation Working Group for PS3/BS3. We validated the assay with 12 control variants and subsequently analyzed eight VUS or novel variants in GAA identified in patients with a positive newborn screen for Pompe disease without phenotypic evidence of infantile-onset disease. Results: The control variants were analyzed in our expression system and an activity range was established. The pathogenic controls had GAA activity between 0% and 11% of normal. The benign or likely benign controls had an activity range of 54%-100%. The pseudodeficiency variant had activity of 17%. These ranges were then applied to the variants selected for functional studies. Using the threshold of <11%, we were able to apply PS3_ supporting to classify two variants as likely pathogenic (c.316C > T and c.1103G > A) and provide further evidence to support the classification of likely pathogenic for two variants (c.1721T > C and c.1048G > A). One variant (c.1123C > T) was able to be reclassified based on other supporting evidence. We were unable to reclassify three variants (c.664G > A, c.2450A > G, and c.1378G > A) due to insufficient or conflicting evidence. Conclusion: We investigated eight GAA variants as proof of concept using our validated and reproducible in vitro expression and functional analysis system. While additional work is needed to further refine our system with additional controls and different variant types in order to apply the PS3/BS3 criteria at a higher level, this tool can be utilized for variant classification to meet the growing need for novel GAA variant classification in the era of newborn screening for Pompe disease.

3.
Acta Trop ; 202: 105095, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31323193

RESUMO

Plasmodium falciparum sarcoplasmic reticulum Ca2+ ATPase (PfSERCA) is sarcoplasmic reticulum membrane bound transporter to regulate cytosol Ca2+ ions. Ca2+ act as secondary messenger and play important role in differentiation of parasite during its life cycle. Present study is epidemiological surveillance of PfSERCA (Pf3D7_0106300) gene fragment harboring 263, 402, 431 codon to look for its single nucleotide polymorphism which is well documented to be associated with Artemisinin tolerance. Filter paper with finger pricked blood samples for Plasmodium falciparum infected uncomplicated malaria patients were obtained for region as diverse as down the longitude from east to west of India i.e. Mizoram, Tripura, Meghalaya, Jharkhand, Odhisa. There observed no mutation for codon 263 at all study sites. Mizoram showed highest PfSERCA diversity with well known SNPs of L402 V, E431 K, A438 V and novel mutations as well i.e. A338 V, S357Y, S379Y. Tripura reported highest proportion of Plasmodium isolates (18.5%) with E431 K single nucleotide polymorphism. Moving towards the west i.e. Meghalaya, Jharkhand, Odhisa showed no occurrence of most prevalent PfSERCA 431, 402 polymorphism worldwide but some novel mutations and its haplotypes. In present study, significantly increased proportion of novel PfSERCA polymorphism among children suggests the susceptibility of these Plasmodium falciparum strains to acquired immunity. Mizoram, sharing open international border with south east asia, demonstrated highest PfSERCA diversity. Spatial PfSERCA diversity from far north east India to moving towards west implies its association with antimalarial susceptibility.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Genótipo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Retículo Sarcoplasmático/enzimologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas , ATPases Transportadoras de Cálcio/genética , Criança , Resistência a Medicamentos/genética , Haplótipos , Humanos , Índia/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação
4.
Biochim Biophys Acta Proteins Proteom ; 1867(11): 140261, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31401312

RESUMO

Bacillus lipases are industrially attractive enzymes due to their broad substrate specificity and optimum alkaline pH. However, narrow temperature range of action and low thermostability restrain their optimal use and thus, necessitate attention. Several laboratories are engaged in protein engineering of Bacillus lipases to generate variants with improved attributes for decades using techniques such as directed evolution or rational design. This review summarizes the effect of mutations on the conformational changes through in silico modeling and their manifestation with respect to various biochemical parameters. Various studies have been put together to develop a perspective on the molecular basis of biocatalysis of lipases holding industrial importance.


Assuntos
Substituição de Aminoácidos , Bacillus/enzimologia , Proteínas de Bactérias/química , Temperatura Alta , Lipase/química , Bacillus/genética , Proteínas de Bactérias/genética , Estabilidade Enzimática/genética , Lipase/genética , Mutação de Sentido Incorreto , Relação Estrutura-Atividade
5.
Infect Genet Evol ; 63: 285-290, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29842979

RESUMO

PfMDR1 single nucleotide polymorphisms (SNP) are good correlate markers for antimalarial drug resistance worldwide. Present study is a comprehensive view of screening of PfMDR1 polymorphism to antimalarials practiced with geography and time. Study sites Mizoram, Tripura, Meghalaya chosen are at multivariate drug pressure due to cross border migration and transmission. Mizoram is gateway to south east Asia through Myanmar whereas Tripura, Meghalaya share porous border with Bangladesh. Baseline finger pricked blood stained filter paper for confirmed uncomplicated Plasmodium falciparum infected patients (year 2015) were obtained from National Institute of Malaria Research, New Delhi, India. PfMDR1 polymorphism for codon N86Y, Y184F, D1246Y was determined by PCR-RFLP, further confirmed by sequencing. There observed marked predominance of Plasmodium isolates with PfMDR1 wild type alleles for all codons under study i.e. 86, 184, 1246. Spatially, Plasmodium isolates from Mizoram were most diverse with co-existence of PfMDR1 genotype with NYD, YYD, NFD haplotypes, followed by Tripura. Isolates from Meghalaya were of all NYD haplotype. Reports, referring to screening of PfMDR1 SNPs to CQ/SP/AS-SP across India, were archived. Temporal study show distinct rise in proportion of PfMDR1 wild type N86 allele since introduction of Artemether-Lumefantrine as first line antimalarial. Hence spatio-temporal screening of Plasmodium population with PfMDR1 single nucleotide polymorphism accounts for its association with antimalarial susceptibility and validate PfMDR1 SNPs as antimalarial drug resistant marker.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Bangladesh/epidemiologia , Cloroquina/uso terapêutico , Combinação de Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Expressão Gênica , Haplótipos , Humanos , Índia/epidemiologia , Lumefantrina/uso terapêutico , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mianmar/epidemiologia , Filogenia , Filogeografia , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico
6.
Int J Biol Macromol ; 88: 507-14, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27083848

RESUMO

Small molecular weight Bacillus lipases are industrially attractive because of its alkaline optimum pH, broad substrate specificity and production in high yield by overexpression both in Escherichia coli and Bacillus subtilis. Its major limitation of being mesophilic in nature is constantly targeted by laboratory evolution studies. Herein metagenomically isolated Bacillus LipJ was randomly evolved by error prone PCR and library of variants were screened for enhanced thermostability. Point mutant Gln121Arg was extensively characterized and it showed dramatic shift of Temp. opt to 50°C compared to 37°C for parent enzyme. Thermostability studies at 45°C and 50°C determined six fold increase in half life for point variant Gln121Arg compared to LipJ. Circular dichroism (CD) and tryptophan fluorescence study established enhanced thermostability of Gln121Arg. Specific activity of point variant Gln121Arg was comparable to wild type with increased substrate affinity (Km reduced). Reduced kcat for variant Gln121Arg infer that kinetic and catalytic efficiency of mutant was compromised. Structural implications by homolog modelling predicted Gln121 to be placed within longest loop of the structure at surface. Localization of loop due to additional polar interactions by Arg121 to protein core defines molecular basis of enhanced thermostability of random point variant Gln121Arg.


Assuntos
Bacillus subtilis/química , Estabilidade Enzimática/genética , Regulação Enzimológica da Expressão Gênica/genética , Lipase/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Dicroísmo Circular , Escherichia coli/genética , Cinética , Lipase/genética , Mutação Puntual , Especificidade por Substrato , Temperatura
7.
Gene ; 576(1 Pt 2): 237-43, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26456196

RESUMO

Cold adapted enzymes have applications in detergent, textile, food, bioremediation and biotechnology processes. Bacillus lipases are 'generally recognized as safe' (GRAS) and hence are industrially attractive. Bacillus lipase of 1.4 subfamily are of lowest molecular weight and are reversibly unfolded due to absence of disulphide bonds. Therefore these are largely used to study energetic of protein stability that represents unfolding of native protein to fully unfolded state. In present study, metagenomically isolated Bacillus LipJ was laboratory evolved for cold adaptation by error Prone PCR. Library of variants were screened for high relative activity at low temperature of 10°C compared to native protein LipJ. Point mutant sequenced as Phe19→Leu was determined to be active at cold and was selected for extensive biochemical, biophysical characterization. Variant F19L showed its maximum activity at 10°C where parent protein LipJ had 20% relative activity. Psychrophilic nature of F19L was established with about 50% relative active at 5°C where native protein was frozen to act. Variant F19L showed no activity at temperature 40°C and above, establishing its thermolabile nature. Thermostability studies determined mutant to be unstable above 20°C and three fold decrease in its half life at 30°C compared to native protein. Far UV-CD and intrinsic fluorescence study demonstrated unstable tertiary structure of point variant F19L leading to its unfolding at low temperature of 20°C. Cold adaptation of mutant F19L is accompanied with increased specific activity. Mutant was catalytically more efficient with 1.3 fold increase in kcat. Homologue structure modelling predicted disruption of intersecondary hydrophobic core formed by aromatic ring of Phe19 with non polar residues placed at ß3, ß4, ß5, ß6, αF. Increased local flexibility of variant F19L explains molecular basis of its psychrophilic nature.


Assuntos
Bacillus/enzimologia , Evolução Molecular Direcionada/métodos , Lipase/genética , Lipase/metabolismo , Reação em Cadeia da Polimerase/métodos , Bacillus/genética , Dicroísmo Circular , Clonagem Molecular , Temperatura Baixa , Modelos Moleculares , Mutação Puntual , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
8.
Appl Biochem Biotechnol ; 178(4): 753-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26520838

RESUMO

Bacillus lipolytic enzymes of subfamily 1.4 are industrially attractive because of its alkaline optimum pH and broad substrate specificity. The activity and stability of these enzymes for a limited temperature range (30-50 °C) need attention for its industrial application. In the present study, Bacillus subtilis LipJ was rationally designed for low-temperature adaptation. Small amino acids with lower volume and without side chain branches have high occurrence among psychrophilic proteins. Met residue is reported to be preferred for cold adaptation as it is thermolabile in nature and undergoes oxidation at high temperature. Therefore, the Ile137 residue, three residues downstream the catalytic residue Asp133, was substituted by Met. Biochemical study demonstrated that variant Ile137Met was optimally active at 20 °C whereas parent enzyme was most active at 37 °C. The variant retained 70-80% relative activity at 10 °C where parent enzyme demonstrated low activity. Ile137Met was observed to be unstable at and above 30 °C. Kinetic study demonstrated increased K m and k cat values for variant referring improved catalytic efficiency but poor substrate affinity. Homolog modelling predicted lowered number of weak interactions by substituted Met137 as molecular basis of increased flexibility of variant. Hence, increased structure flexibility might be responsible for poor substrate affinity but increased molecular motion for higher catalysis at cold.


Assuntos
Bacillus subtilis/enzimologia , Isoleucina/genética , Lipase/metabolismo , Metionina/genética , Mutação Puntual , Biocatálise , Clonagem Molecular , Cinética , Lipase/genética , Lipase/isolamento & purificação , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA