Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798394

RESUMO

Aortic valve stenosis (AVS) is a progressive disease wherein males develop valve calcification relative to females that develop valve fibrosis. Valvular interstitial cells (VICs) aberrantly activate to myofibroblasts during AVS, driving the fibrotic valve phenotype in females. Myofibroblasts further differentiate into osteoblast-like cells and secrete calcium nanoparticles, driving valve calcification in males. We hypothesized the lysine demethylase UTY (ubiquitously transcribed tetratricopeptide repeat containing, Y-linked) decreases methylation uniquely in response to nanoparticle cues in the valve extracellular matrix to promote an osteoblast-like phenotype. Here, we describe a bioinspired hydrogel cell culture platform to interrogate how nanoscale cues modulate sex-specific methylation states in VICs activating to myofibroblasts and osteoblast-like cells. We found UTY (ubiquitously transcribed tetratricopeptide repeat containing, Y-linked) modulates VIC phenotypes in response to nanoscale cues uniquely in males. Overall, we reveal a novel role of UTY in the regulation of calcification processes in males during AVS progression.

2.
Bioeng Transl Med ; 8(6): e10592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023728

RESUMO

Diabetes is a known risk factor for various cardiovascular complications, mediated by endothelial dysfunction. Despite the high prevalence of this metabolic disorder, there is a lack of in vitro models that recapitulate the complexity of genetic and environmental factors associated with diabetic endothelial dysfunction. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to develop in vitro models of diabetic endothelial dysfunction. We found that the diabetic phenotype was recapitulated in diabetic patient-derived iPSC-ECs, even in the absence of a diabetogenic environment. Subsequent exposure to culture conditions that mimic the diabetic clinical chemistry induced a diabetic phenotype in healthy iPSC-ECs but did not affect the already dysfunctional diabetic iPSC-ECs. RNA-seq analysis revealed extensive transcriptome-wide differences between cells derived from healthy individuals and diabetic patients. The in vitro disease models were used as a screening platform which identified angiotensin receptor blockers (ARBs) that improved endothelial function in vitro for each patient. In summary, we present in vitro models of diabetic endothelial dysfunction using iPSC technology, taking into account the complexity of genetic and environmental factors in the metabolic disorder. Our study provides novel insights into the pathophysiology of diabetic endothelial dysfunction and highlights the potential of iPSC-based models for drug discovery and personalized medicine.

3.
J Mater Chem B ; 10(37): 7089-7098, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36043366

RESUMO

Biological sex differences are observed at multiple different length scales and across organ systems. Gaps in knowledge remain regarding our understanding of how molecular, cellular, and environmental factors contribute to physiological sex differences. Here, we provide our perspective on how chemical and molecular tools can be leveraged to explore sex differences in biology at the molecular, intracellular, extracellular, tissue, and organ length scales. We provide examples where chemical and molecular tools were used to explore sex differences in the cardiovascular, nervous, immune, and reproductive systems. We also provide a future outlook where chemical and molecular tools can be applied to continue investigating sex differences in biology, with the ultimate goal of addressing inequities in biomedical research and approaches to clinical treatments.


Assuntos
Coração , Caracteres Sexuais , Feminino , Humanos , Masculino
4.
iScience ; 24(4): 102246, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33796838

RESUMO

Heterozygous gain-of-function (GOF) mutations of hypoxia-inducible factor 2α (HIF2A), a key hypoxia-sensing regulator, are associated with erythrocytosis, thrombosis, and vascular complications that account for morbidity and mortality of patients. We demonstrated that the vascular pathology of HIF2A GOF mutations is independent of erythrocytosis. We generated HIF2A GOF-induced pluripotent stem cells (iPSCs) and differentiated them into endothelial cells (ECs) and smooth muscle cells (SMCs). Unexpectedly, HIF2A-SMCs, but not HIF2A-ECs, were phenotypically aberrant, more contractile, stiffer, and overexpressed endothelin 1 (EDN1), myosin heavy chain, elastin, and fibrillin. EDN1 inhibition and knockdown of EDN1-receptors both reduced HIF2-SMC stiffness. Hif2A GOF heterozygous mice displayed pulmonary hypertension, had SMCs with more disorganized stress fibers and higher stiffness in their pulmonary arterial smooth muscle cells, and had more deformable pulmonary arteries compared with wild-type mice. Our findings suggest that targeting these vascular aberrations could benefit patients with HIF2A GOF and conditions of augmented hypoxia signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA