Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(10): 2964-2971, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37130253

RESUMO

OBJECTIVE: Abnormal slow-wave activity has been associated with functional motility disorders. Gastric pacing has been investigated to correct slow-wave abnormalities, but clinical therapies are yet to be established. This study aimed to define optimal parameters to advance the application of gastric pacing. METHODS: High-resolution gastric mapping was utilized to evaluate four pacing parameters in in-vivo pig studies: (i) orientation of the pacing electrodes (longitudinal vs circumferential), (ii) pacing energy (900 vs 10,000 ms mA2), (iii) the pacing location (corpus vs antrum), and (iv) pacing period (between 12 and 36 s). RESULTS: The probability of slow-wave initiation and entrainment with the pacing electrodes oriented longitudinally was significantly higher than with electrodes orientated circumferentially (86 vs 10%). High-energy pacing accelerated entrainment over the entire mapped field compared to low-energy pacing (3.1±1.5 vs 7.3±2.4 impulses, p < 0.001). Regardless of the location of the pacing site, the new site of slow-wave initiation was always located 4-12 mm away from the pacing site, between the greater curvature and negative pacing electrode. A pacing period between 14-30 s resulted in stable slow-wave initiation and entrainment. CONCLUSION: These data will now inform effective application of gastric pacing in future studies, including human translation.


Assuntos
Motilidade Gastrointestinal , Estômago , Humanos , Animais , Suínos , Eletrodos , Cognição
2.
Fungal Syst Evol ; 6: 157-231, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32904192

RESUMO

Seven new genera, 26 new species, 10 new combinations, two epitypes, one new name, and 20 interesting new host and / or geographical records are introduced in this study. New genera are: Italiofungus (based on Italiofungus phillyreae) on leaves of Phillyrea latifolia (Italy); Neolamproconium (based on Neolamproconium silvestre) on branch of Tilia sp. (Ukraine); Neosorocybe (based on Neosorocybe pini) on trunk of Pinus sylvestris (Ukraine); Nothoseptoria (based on Nothoseptoria caraganae) on leaves of Caragana arborescens (Russia); Pruniphilomyces (based on Pruniphilomyces circumscissus) on Prunus cerasus (Russia); Vesiculozygosporium (based on Vesiculozygosporium echinosporum) on leaves of Muntingia calabura (Malaysia); Longiseptatispora (based on Longiseptatispora curvata) on leaves of Lonicera tatarica (Russia). New species are: Barrmaelia serenoae on leaf of Serenoa repens (USA); Chaetopsina gautengina on leaves of unidentified grass (South Africa); Chloridium pini on fallen trunk of Pinus sylvestris (Ukraine); Cadophora fallopiae on stems of Reynoutria sachalinensis (Poland); Coleophoma eucalyptigena on leaf litter of Eucalyptus sp. (Spain); Cylindrium corymbiae on leaves of Corymbia maculata (Australia); Diaporthe tarchonanthi on leaves of Tarchonanthus littoralis (South Africa); Elsinoe eucalyptorum on leaves of Eucalyptus propinqua (Australia); Exophiala quercina on dead wood of Quercus sp., (Germany); Fusarium californicum on cambium of budwood of Prunus dulcis (USA); Hypomyces gamsii on wood of Alnus glutinosa (Ukraine); Kalmusia araucariae on leaves of Araucaria bidwillii (USA); Lectera sambuci on leaves of Sambucus nigra (Russia); Melanomma populicola on fallen twig of Populus canadensis (Netherlands), Neocladosporium syringae on branches of Syringa vulgarishorus (Ukraine); Paraconiothyrium iridis on leaves of Iris pseudacorus (Ukraine); Pararoussoella quercina on branch of Quercus robur (Ukraine); Phialemonium pulveris from bore dust of deathwatch beetle (France); Polyscytalum pinicola on needles of Pinus tecunumanii (Malaysia); Acervuloseptoria fraxini on Fraxinus pennsylvanica (Russia); Roussoella arundinacea on culms of Arundo donax (Spain); Sphaerulina neoaceris on leaves of Acer negundo (Russia); Sphaerulina salicicola on leaves of Salix fragilis (Russia); Trichomerium syzygii on leaves of Syzygium cordatum (South Africa); Uzbekistanica vitis-viniferae on dead stem of Vitis vinifera (Ukraine); Vermiculariopsiella eucalyptigena on leaves of Eucalyptus sp. (Australia).

3.
Plant Dis ; 103(12): 3166-3171, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545698

RESUMO

Verticillium dahliae, the cause of Verticillium wilt, is a widespread pathogen that affects many crops in California and throughout the world. Cover cropping with leguminous species is often integrated into a rotation scheme for its contribution to soil nitrogen, and can contribute to management of Verticillium wilt provided the chosen crop does not support development of V. dahliae. Seven cool season legumes (faba bean, bell bean, field pea, hairy vetch, common vetch, purple vetch, and woollypod vetch), and three warm season legumes (sesbania, sunn hemp, and black-eyed pea) were evaluated as hosts for reproductive growth of V. dahliae. All 10 legumes were colonized by V. dahliae, while remaining symptomless, when subjected to a root-dip inoculation. Similar results were obtained when plants were grown in infested potting soil, albeit with a lower frequency of infection than in root-dip assays. All tested legumes were also infected in field trials, with the exception of bell bean. Overall, warm season legumes sustained higher rates of infection than cool season legumes. Common vetch was the most extensively colonized of the cool season legumes. Based on the results of this study, legumes may not be an appropriate rotation crop in fields where Verticillium wilt is a problem.


Assuntos
Produtos Agrícolas , Fabaceae , Verticillium , California , Produtos Agrícolas/microbiologia , Fabaceae/microbiologia , Doenças das Plantas/microbiologia , Verticillium/fisiologia
4.
Plant Dis ; 103(6): 1249-1251, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30932736

RESUMO

Fusarium wilt of strawberry, caused by the soilborne pathogen Fusarium oxysporum f. sp. fragariae, is a growing threat to the strawberry industry worldwide. Symptoms of the disease typically include stunting, wilting, crown discoloration, and eventual plant death. When Fusarium wilt was discovered in California, the disease was not known to occur anywhere else in North America. Long distance movement of the pathogen would most likely occur through transport of infected plants, which seems plausible if strawberry plants can sustain infections without showing symptoms of disease. The results of this study document that F. oxysporum f. sp. fragariae can move through stolons of infected mother plants and colonize first-generation daughter plants. The pathogen can also move through stolons from first to second-generation daughter plants. Daughter plants of both generations were always symptomless. The pathogen was recovered from both roots and petioles of infected daughter plants. Similar results were obtained for two cultivars known to be susceptible to Fusarium wilt, Albion and Monterey. Transmission through stolons from mother to daughter plants also occurred in the resistant cultivar, San Andreas, but less frequently than in Albion and Monterey.


Assuntos
Fragaria , Fusarium , California , Fragaria/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia
5.
Plant Dis ; 103(4): 697-704, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742553

RESUMO

Previous work has shown that raising the pH of acidic soil to near neutrality can reduce the incidence of Fusarium wilt. The basis for this effect has not been established. The present study assessed effects of pH on spore germination, growth, and infection of strawberry roots by Fusarium oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry. There was not a significant effect of pH (5 versus 7) on the rate of spore germination at either 20 or 25°C for any of the three tested isolates (one representative of each clonal lineage of F. oxysporum f. sp. fragariae found in California). Likewise, pH did not have a significant effect on fungal growth at 20°C. At 25°C, two isolates grew faster at pH 7 than at pH 5. Growth of the third isolate was unaffected by the difference in pH. For the strawberry cultivar Albion, the frequency of root infection was significantly higher for plants grown in acidified soil (near pH 5) than for plants grown in soil near neutrality. The higher frequency of root infection in acidified soil was associated with a lower level of microbial activity, as measured by hydrolysis of fluorescein diacetate.


Assuntos
Fragaria , Fusarium , Esporos , California , Fragaria/microbiologia , Fusarium/fisiologia , Concentração de Íons de Hidrogênio , Doenças das Plantas/microbiologia , Esporos/crescimento & desenvolvimento
6.
Plant Dis ; 101(4): 550-556, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677354

RESUMO

The objectives of this study were to investigate the structure of the population of Fusarium oxysporum f. sp. fragariae in California and to evaluate methods for its detection. Fifty-nine isolates of F. oxysporum f. sp. fragariae were obtained from diseased strawberry plants and their identity was confirmed by pathogenicity testing. The full nuclear ribosomal intergenic spacer (IGS) and elongation factor 1-α gene (EF-1α) were amplified by polymerase chain reaction (PCR) and sequenced to elucidate phylogenetic relationships among isolates. IGS and EF-1α sequences revealed three main lineages, which corresponded to three somatic compatibility groups. Primers designed to detect F. oxysporum f. sp. fragariae in Japan amplified a 239-bp product from 55 of 59 California isolates of F. oxysporum f. sp. fragariae and from no nonpathogenic isolates of F. oxysporum. The sequence of this PCR product was identical to the sequence obtained from F. oxysporum f. sp. fragariae isolates in Japan. Intensive sampling at two locations in California showed results of tests based on PCR and somatic compatibility to be in agreement for 97% (257 of 264) of isolates tested. Our findings revealed considerable diversity in the California population of F. oxysporum f. sp. fragariae, and indications that horizontal gene transfer may have occurred.

7.
Plant Dis ; 101(12): 2066-2072, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30677374

RESUMO

Fusarium oxysporum has recently been identified as the cause of a wilt disease affecting blackberry in California and Mexico. Thirty-six isolates of F. oxysporum obtained from symptomatic blackberry plants in California and Mexico were comprised of nine distinct somatic compatibility groups (SCGs). Phylogenetic analysis of a concatenated data set, consisting of sequences of the translation elongation factor 1-α and ß-tubulin genes and the intergenic spacer of the ribosomal DNA, identified nine three-locus sequence types, each of which corresponded to an SCG. Six SCGs were present only in California, two only in Mexico, and one in both California and Mexico. An isolate associated with the most common SCG in California was tested for pathogenicity on blueberry, raspberry, strawberry, and lettuce. All blueberry, raspberry, and lettuce plants that were inoculated remained healthy, but two of the five strawberry cultivars tested developed symptoms. The three strawberry cultivars that were resistant to the blackberry pathogen were also resistant to F. oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry. We propose to designate strains of F. oxysporum that are pathogenic to blackberry as Fusarium oxysporum f. sp. mori forma specialis nov.


Assuntos
Fusarium , Rubus , California , Fusarium/genética , Fusarium/fisiologia , Genes Fúngicos/genética , México , Filogenia , Doenças das Plantas/microbiologia , Rubus/microbiologia
8.
Phytopathology ; 105(1): 119-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25163010

RESUMO

Resin obtained from Pinus radiata and five monoterpene components of resin (limonene, α-pinene, ß-pinene, camphene, and myrcene) were tested to determine their effects on mycelial growth and germination and survival of spores of Fusarium circinatum, the cause of pitch canker in pine, and F. temperatum, which is interfertile with F. circinatum but not pathogenic to pine. Averaged across all treatments, F. temperatum sustained the greatest reduction in radial growth (16.9±0.02% of control). The greatest reduction in dry weight also occurred in F. temperatum (11.7±0.01% of control), and all isolates of F. circinatum were significantly less affected (P<0.05). Spore germination rates in a saturated atmosphere of monoterpenes were relatively high for all tested isolates but, when placed in direct contact with resin, spore survival was significantly greater for F. circinatum than for F. temperatum. Our results are consistent with the hypothesis that greater tolerance of resin is one factor distinguishing F. circinatum from the nonpathogenic F. temperatum. However, differential tolerance of monoterpene components of resin is not sufficient to explain the observed variation in virulence to pine in F. circinatum.


Assuntos
Fusarium/efeitos dos fármacos , Monoterpenos/farmacologia , Pinus/química , Doenças das Plantas/microbiologia , Resinas Vegetais/farmacologia , Monoterpenos Acíclicos , Alcenos/isolamento & purificação , Alcenos/farmacologia , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/isolamento & purificação , Compostos Bicíclicos com Pontes/farmacologia , Cicloexenos/isolamento & purificação , Cicloexenos/farmacologia , Fusarium/crescimento & desenvolvimento , Fusarium/fisiologia , Limoneno , Monoterpenos/isolamento & purificação , Resinas Vegetais/isolamento & purificação , Especificidade da Espécie , Esporos , Terpenos/isolamento & purificação , Terpenos/farmacologia
9.
Plant Dis ; 96(6): 908, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30727378

RESUMO

Gibberella circinata (anamorph Fusarium circinatum) causes pitch canker in pines and is not known to have any hosts outside the Pinaceae. However, G. circinata is closely related to and interfertile with G. subglutinans, which is associated with grasses both as a pathogen and a commensal endophyte. Furthermore, studies under controlled conditions have shown that G. circinata can colonize corn (Zea mays) without inducing symptoms (4). To determine if G. circinata can also infect grasses under natural conditions, plants were collected in proximity to trees with symptoms of pitch canker in native stands of Pinus radiata (Monterey pine) on the Monterey Peninsula and P. muricata (bishop pine) at Pt. Reyes National Seashore on the California coast during July and August of 2011. Leaves and stems were rinsed in 0.1% Tween 20, immersed in 70% ethanol for 30 s followed by 1 min in 1% NaOCl, and placed on a Fusarium selective medium (FSM) (1). Single-spore subcultures of colonies growing from cultured plant material were transferred to 0.6% KCl agar and identified as G. circinata based on morphological criteria as described by Gordon et al. (2). G. circinata isolates were recovered from Holcus lanatus and Festuca arundinacea on the Monterey Peninsula and H. lanatus at Pt. Reyes National Seashore. Three isolates from each of these sources (nine total) and one known G. circinata isolate from pines (GL 17) were tested for virulence by inoculating 1-year-old, greenhouse-grown Monterey pine trees; three trees were inoculated, once for each isolate. Trees were inoculated by depositing 250 spores in a wound on the main stem by the method described by Gordon et al. (3). Two weeks later, all grass isolates had induced resinous branch cankers with lesions comparable in length (17 to 24 mm) and appearance to those caused by GL 17. Similar results were obtained when inoculations were repeated. One isolate from F. arundinacea and one from H. lanatus (collected at Pt. Reyes National Seashore) were tested and shown to be somatically compatible with tester strains for vegetative compatibility groups C6 and C1, respectively, both of which are associated with isolates previously recovered from diseased pines (2). GL 17 and one isolate each from F. arundinaceae and H. lanatus were tested for their ability to infect F. arundinaceae cv. Fawn. For each isolate, 20 14-day-old seedlings (10 pots with two plants per pot) were sprayed to runoff with an aqueous suspension of 106 spores per ml. All inoculations were repeated once. Two weeks after inoculation, leaves and stems were rinsed briefly in 0.1% Tween 20, immersed for 10 s in 70% ethanol, followed by 30 s in 1% NaOCl, and cultured on FSM. All tested isolates were recovered from at least some of the inoculated plants (range 20 to 100%), from living stems and leaves, as well as from senescing tissue. These results show that grass species can be symptomless hosts for G. circinata, constituting the first documentation of any host for this pathogen outside the Pinaceae. Studies are underway to further characterize the host range of G. circinata and assess the epidemiological implications of grasses as alternate hosts for the pitch canker pathogen. References: (1) B. J. Aegerter and T. R. Gordon. For. Ecol. Manag. 235:14, 2006. (2) T. R. Gordon et al. Mycol. Res. 100:850, 1996. (3) T. R. Gordon et al. Hortscience 33:868, 1998. (4) C. L. Swett and T. R. Gordon. Phytopathology (Abstr.) 89:S126, 2009.

10.
Plant Dis ; 96(1): 145, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30731881

RESUMO

In 2010 in Yuma, AZ, field-grown fennel (Foeniculum vulgare, Apiaceae) exhibited previously undescribed disease symptoms. The lower stems in contact with soil developed a brown decay and leaves on these stems became chlorotic. White mycelium and orange sporodochia were observed on affected tissues near the soil line. Diseased stems later wilted, died, and resulted in reduced quality of the fennel; these plants were not harvested. Disease distribution was patchy and prevalence was approximately 5%. Symptomatic tissues were surface sterilized in a dilute (1%) bleach solution for 3 min and tissues from the margins of the decay were placed into petri plates containing acidified corn meal agar (2 ml of 25% lactic acid/liter). Isolations consistently resulted in the recovery of a presumptive Fusarium species. Isolates were transferred to carnation leaf agar and incubated at 22°C under fluorescent lights for 10 days. Morphologies of all isolates were identical, with macroconidia being long and slender, slightly curved, with elongated, bent apical cells and notched basal cells. Conidia were borne on monophialides. Microconidia were sparse and chlamydospores were not observed. For two isolates, a portion of the translation elongation factor 1-alpha gene (TEF) was amplified with primers ef1 and ef2 (3). Based on a comparison of 668 base pairs, both isolates had the same sequence, which differed by one base pair from an accession (GQ915502.1) of Fusarium avenaceum in GenBank. The same single base pair also separated the two fennel isolates from an isolate of F. avenaceum (GL 13) previously recovered from Eustoma grandiflorum (=Lisianthus russellianus) (2). Thus, both morphological and molecular criteria support identification of the recovered fungus as F. avenaceum (Fries) Saccardo. Partial TEF sequences were deposited in GenBank (Accession Nos. JN254784, JN254785, and JN254786 for the two fennel isolates and GL 13, respectively). All isolates are archived in the Department of Plant Pathology at University of California, Davis. Pathogenicity was tested by cutting shallow slits into fennel stems, inserting one colonized agar plug into each cut, and wrapping the stems with Parafilm. Five isolates from fennel were tested on 10 stems each. Control plants were inoculated with uncolonized agar plugs. Plants were maintained at 24 to 26°C in a greenhouse. After 6 to 8 days, a brown decay developed on 70 to 90% of Fusarium-inoculated stems at the points of inoculation. Foliage later became chlorotic and F. avenaceum was recovered from all symptomatic stems. Control plants were symptomless. The experiment was completed two times and results were the same. In addition, F. avenaceum isolate GL13 from E. grandiflorum (2) was inoculated onto fennel plants with the same method. However, these inoculated plants remained symptomless. To our knowledge, this is the first report of a stem and crown rot disease of fennel caused by F. avenaceum. Apparently, the only other published account of a Fusarium disease of fennel is root rot caused by F. solani (1). The inability of the Eustoma isolate of F. avenaceum to cause disease in fennel suggests that these two crown rot pathogens may have restricted host ranges. References: (1) J. H. Gupta and V. P. Srivastava. Indian J. Mycol. Plant Pathol. 8:206, 1979. (2) S. T. Koike et al. Plant Dis. 80:1429, 1996. (3) K. O'Donnell et al. Proc. Nat. Acad. Sci. U.S.A. 95:2044, 1998.

11.
Infect Genet Evol ; 11(3): 533-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21256980

RESUMO

Fusarium oxysporum is an asexual fungal species that includes human and animal pathogens and a diverse range of nonpathogens. Pathogenic and nonpathogenic strains of this species can be distinguished from each other with pathogenicity tests, but not with morphological analysis or sexual compatibility studies. Substantial genetic diversity among isolates has led to the realization that F. oxysporum represents a complex of cryptic species. F. oxysporum f. sp cubense (Foc), causal agent of Fusarium wilt of banana, is one of the more than 150 plant pathogenic forms of F. oxysporum. Multi-gene phylogenetic studies of Foc revealed at least eight phylogenetic lineages, a finding that was supported by random amplified polymorphic DNAs, restriction fragment length polymorphisms and amplified fragment length polymorphisms. Most of these lineages consist of isolates in closely related vegetative compatibility groups, some of which possess opposite mating type alleles, MAT-1 and MAT-2; thus, the evolutionary history of this fungus may have included recent sexual reproduction. The ability to cause disease on all or some of the current race differential cultivars has evolved convergently in the taxon, as members of some races appear in different phylogenetic lineages. Therefore, various factors including co-evolution the plant host and horizontal gene transfer are thought to have shaped the evolutionary history of Foc. This review discusses the evolution of Foc as a model formae specialis in F. oxysporum in relation to recent research findings involving DNA-based studies.


Assuntos
Fusarium/classificação , Magnoliopsida/microbiologia , Doenças das Plantas/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Evolução Biológica , Fusarium/patogenicidade , Fusarium/fisiologia , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Sequências Repetitivas de Ácido Nucleico
12.
Plant Dis ; 94(1): 13-17, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30754388

RESUMO

The effect of temperature on Fusarium wilt of lettuce (Lactuca sativa), caused by Fusarium oxysporum f. sp. lactucae, was examined in a controlled environment. Nine lettuce cultivars planted in infested potting mix (500 or 5,000 CFU/g) were maintained under high/low diurnal temperature regimes of 26/18°C, 28/20°C, or 33/26°C. Three cultivars were resistant to Fusarium wilt under all test conditions, and thus were little affected by differences in inoculum level or temperature. The remaining cultivars were more susceptible and manifested more severe symptoms at the higher inoculum level and when maintained at higher temperatures. The tendency for the disease to be more severe under warmer conditions may be due, in part, to an effect of temperature on growth of the pathogen. Radial growth rates calculated for six isolates of F. oxysporum f. sp. lactucae were observed to increase from 10°C up to an apparent maximum near 25°C. The results of this study suggest that growers can reduce the risk of damage from Fusarium wilt by avoiding susceptible cultivars during the warmest planting periods. Further, isolates of F. oxysporum f. sp. lactucae were shown to have a distinctive colony morphology in culture, which made it possible to distinguish them from nonpathogenic strains.

13.
Phytopathology ; 99(11): 1228-36, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19821726

RESUMO

The ecosystem services concept provides a means to define successful disease management more broadly, beyond short-term crop yield evaluations. Plant disease can affect ecosystem services directly, such as through removal of plants providing services, or indirectly through the effects of disease management activities, including pesticide applications, tillage, and other methods of plant removal. Increased plant biodiversity may reduce disease risk if susceptible host tissue becomes less common, or may increase risk if additional plant species are important in completing pathogen life cycles. Arthropod and microbial biodiversity may play similar roles. Distant ecosystems may provide a disservice as the setting for the evolution of pathogens that later invade a focal ecosystem, where plants have not evolved defenses. Conversely, distant ecosystems may provide a service as sources of genetic resources of great value to agriculture, including disease resistance genes. Good policies are needed to support conservation and optimal use of genetic resources, protect ecosystems from exotic pathogens, and limit the homogeneity of agricultural systems. Research is needed to provide policy makers, farmers, and consumers with the information required for evaluating trade-offs in the pursuit of the full range of ecosystem services desired from managed and native ecosystems.


Assuntos
Ecossistema , Controle Biológico de Vetores , Doenças das Plantas
14.
Appl Environ Microbiol ; 75(14): 4770-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19482953

RESUMO

Fusarium oxysporum f. sp. cubense, the causal agent of fusarium wilt of banana (Musa spp.), is one of the most destructive strains of the vascular wilt fungus F. oxysporum. Genetic relatedness among and within vegetative compatibility groups (VCGs) of F. oxysporum f. sp. cubense was studied by sequencing two nuclear and two mitochondrial DNA regions in a collection of 70 F. oxysporum isolates that include representatives of 20 VCGs of F. oxysporum f. sp. cubense, other formae speciales, and nonpathogens. To determine the ability of F. oxysporum f. sp. cubense to sexually recombine, crosses were made between isolates of opposite mating types. Phylogenetic analysis separated the F. oxysporum isolates into two clades and eight lineages. Phylogenetic relationships between F. oxysporum f. sp. cubense and other formae speciales of F. oxysporum and the relationships among VCGs and races of F. oxysporum f. sp. cubense clearly showed that F. oxysporum f. sp. cubense's ability to cause disease on banana has emerged multiple times, independently, and that the ability to cause disease to a specific banana cultivar is also a polyphyletic trait. These analyses further suggest that both coevolution with the host and horizontal gene transfer may have played important roles in the evolutionary history of the pathogen. All examined isolates harbored one of the two mating-type idiomorphs, but never both, which suggests a heterothallic mating system should sexual reproduction occur. Although, no sexual structures were observed, some lineages of F. oxysporum f. sp. cubense harbored MAT-1 and MAT-2 isolates, suggesting a potential that these lineages have a sexual origin that might be more recent than initially anticipated.


Assuntos
Fusarium/classificação , Fusarium/genética , Musa/microbiologia , Doenças das Plantas/microbiologia , Análise por Conglomerados , Cruzamentos Genéticos , DNA Fúngico/química , DNA Fúngico/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Evolução Molecular , Fusarium/isolamento & purificação , Genes Fúngicos Tipo Acasalamento , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Análise de Sequência de DNA
15.
Phytopathology ; 99(1): 67-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19055436

RESUMO

Following the introduction of Puccinia jaceae var. solstitialis to California for biological control of yellow starthistle (Centaurea solstitialis, Asteraceae), teliospores, pycnia, and multiple urediniospore generations have been observed in the field. Because urediniospores have a relatively short life span in the field, functioning teliospores are expected to be necessary for the permanent establishment of P. jaceae var. solstitialis in California. To determine if conditions in California were conducive to this, teliospore emergence and priming were evaluated in the field. A factorial experiment in the laboratory with five incubation times and three incubation temperatures was used to determine teliospore priming requirements. Teliospore production coincided with plant senescence in August and September at two sites in 2 years; fewer teliospores were produced in 2006, suggesting inconsistent teliospore production may limit population growth and contribute to local extinctions in some areas. When teliospores were primed in the field, germination was low through the fall and abruptly peaked in January during both years. In the laboratory, teliospore germination increased as incubation time increased from 2 to 6 weeks and temperatures decreased from 12 to 4 degrees C. A degree-hour model derived from laboratory data accurately predicts when teliospores are primed for germination in the field. Based on the results obtained in this study, it is apparent that teliospore germination can occur over a range of priming conditions. However, lower temperatures and longer incubation periods are superior in breaking teliospore dormancy.


Assuntos
Basidiomycota/fisiologia , Centaurea/microbiologia , Controle Biológico de Vetores/métodos , Esporos Fúngicos , Fatores de Tempo
16.
Plant Dis ; 93(10): 1077, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30754358

RESUMO

Beginning in 2006 and continuing into 2009, an apparently new disease of strawberry (Fragaria × ananassa) affected commercial plantings (cvs. Albion, Camarosa, and others) in coastal (Ventura and Santa Barbara counties) California. Symptoms consisted of wilting of foliage, drying and withering of older leaves, stunting of plants, and reduced fruit production. Plants eventually collapsed and died. Internal vascular and cortical tissues of plant crowns showed a brown-to-orange-brown discoloration. Differences in cultivar susceptibility were not recorded. Internal crown and petiole tissues, when placed on acidified corn meal agar, consistently yielded Fusarium isolates having similar colony morphologies. No other pathogens were isolated. The Fusarium isolates were subcultured on carnation leaf agar and observed to be producing macroconidia and microconidiophores that are diagnostic of Fusarium oxysporum (1). For two of these isolates, the internal transcribed spacer region comprising ITS1, ITS2, and 5.8S rRNA was amplified using primers ITS-1 and ITS-4 (3). On the basis of a comparison of 515 bp, both isolates had the identical sequence, which was a 100% match for 30 accessions of F. oxysporum in GenBank. This comparison included several formae speciales of F. oxysporum, but F. oxysporum f. sp. fragariae, a previously described pathogen of strawberry (4), was not included. The isolates are archived in the Department of Plant Pathology at UC Davis and are available on request. Both sequenced isolates plus four others were tested for pathogenicity on strawberries. For these tests, spore suspensions of 1 × 105 conidia/ml were prepared separately for six isolates. Roots of strawberry transplants (12 plants of cv. Camino Real) were cut and soaked in spore suspensions for 10 min. Plants were potted in soilless, peat moss-based medium in containers. Control strawberry plants were soaked in water prior to planting. All plants were then grown in a shadehouse. After 8 weeks, inoculated plants began to show wilting and decline of foliage and internal crown tissue was lightly discolored. F. oxysporum was isolated from all inoculated plants. Control plants did not exhibit any disease symptoms and crown tissue was symptomless. To our knowledge, this is the first report of Fusarium wilt of strawberry in California. This disease has been reported from a number of other countries including Argentina, Australia, China, South Korea, Spain, and Japan (2). Since 2006, Fusarium wilt of strawberry has increased in incidence and severity in California. Initial problems in 2006 consisted of multiple small patches (2 to 4 beds wide × 3 to 10 m long) of diseased plants; in these patches disease incidence could range from 80 to 100%. By 2009, in some fields, the disease affected large sections that ran the length of the field. References: (1) P. E. Nelson et al. Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University Press, University Park, 1983. (2) H. S. Okamoto et al. Plant Prot. 24:231, 1970. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Application. Academic Press, NY, 1993. (4) B. L. Winks and Y. N. Williams. Qld. J. Agric. Anim. Sci. 22:475, 1966.

17.
Plant Dis ; 92(4): 542-545, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30769636

RESUMO

Pitch canker, caused by Gibberella circinata (anamorph = Fusarium circinatum), causes canopy dieback and mortality in susceptible pine species in many parts of the world. Pitch canker is most problematic in areas with a relatively warm climate, suggesting a possible limitation on disease development imposed by low temperatures. To test this hypothesis, the effect of temperature on radial growth was examined in isolates of G. circinata of diverse geographic origin. All isolates grew most rapidly at 25°C and progressively more slowly at 20, 15, and 10°C. Spore germination occurred most rapidly at 20°C and was slowest at 10°C. To determine if the time required for spore germination might influence the likelihood of infection, the duration of wound susceptibility was examined by inoculating branches of susceptible Monterey pines (Pinus radiata). In each of six field trials, branches were wounded and then inoculated immediately or at 2, 6, or 9 days after wounding. The results indicated that wounds inoculated immediately became infected at a significantly higher rate than those inoculated 2 days later. Thus, if low temperatures extend the time required for germination beyond this period, a reduced infection frequency would be expected. Such a limiting effect of temperature could help to explain the current distribution of pitch canker.

18.
Fungal Genet Biol ; 44(8): 701-14, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17418597

RESUMO

The Gibberella fujikuroi complex includes many plant pathogens of agricultural crops and trees, all of which have anamorphs assigned to the genus Fusarium. In this study, an interspecific hybrid cross between Gibberella circinata and Gibberella subglutinans was used to compile a genetic linkage map. A framework map was constructed using a total of 578 AFLP markers together with the mating type (MAT-1 and MAT-2) genes and the histone (H3) gene. Twelve major linkage groups were identified (n=12). Fifty percent of the markers showed significant deviation from the expected 1:1 transmission ratio in a haploid F(1) cross (P <0.05). The transmission of the markers on the linkage map was biased towards alleles of the G. subglutinans parent, with an estimated 60% of the genome of F(1) individuals contributed by this parent. This map will serve as a powerful tool to study the genetic architecture of interspecific differentiation and pathogenicity in the two parental genomes.


Assuntos
Mapeamento Cromossômico , Fusarium/genética , Ordem dos Genes , Genoma Fúngico , Recombinação Genética , Genes Fúngicos
19.
Plant Dis ; 91(4): 380-386, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30781178

RESUMO

The fungal pathogen Claviceps purpurea (subgroup G3) has a worldwide distribution on salt marsh Spartina spp. In Northern California (United States), native Spartina foliosa sustains high rates of infection by G3 C. purpurea in marshes north of the San Francisco Estuary. Invasive populations of S. alterniflora and S. alterniflora × foliosa hybrids are virtually disease free in the same estuary, although S. alterniflora is host to G3 C. purpurea in its native range (Atlantic Coast of the United States). Greenhouse inoculation experiments showed no differences in susceptibility among S. foliosa, S. alterniflora, and Spartina hybrids. Under field conditions, S. foliosa sustained a higher incidence of disease in coastal marshes than in marshes within the bay. This geographic effect may be attributable to environmental differences between the coast and the bay proper, with the former being more conducive to infection by C. purpurea. Seed set of S. foliosa spikelets was 40 to 70% lower on infected than on uninfected inflorescences, but seed germination was not affected. The C. purpurea epidemic on S. foliosa on the coast north of the San Francisco Estuary further reduces the meager competitive ability of this declining native plant species.

20.
Phytopathology ; 96(6): 657-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18943185

RESUMO

ABSTRACT Pitch canker, caused by Fusarium circinatum, is a disease affecting pines in many locations throughout the world. The pathosystem was originally described in the southeastern (SE) United States and was identified in California in 1986. Limited vegetative compatibility group (VCG) diversity in the California population of F. circinatum, relative to the SE United States, suggests the former is a recently established and clonally propagating population. Although the much greater VCG diversity found in the SE United States is suggestive of out-crossing, molecular markers indicate that many vegetatively incompatible isolates are clonally related. This implies that VCG diversity may derive, at least in part, from somatic mutations rather than sexual reproduction. Pitch canker is damaging to many pine species and one at particular risk is Monterey pine (Pinus radiata), which is widely grown in plantations and is highly susceptible to pitch canker. However, some Monterey pines are resistant to pitch canker and some severely diseased trees have been observed to recover. The absence of new infections on these trees reflects the operation of systemic induced resistance, apparently in response to repeated infection by the pitch canker pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA