Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 5(12): 17503-17507, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36570474

RESUMO

In this work, we report a 5-min magnetic particle spectroscopy (MPS)-based bioassay strategy. In our approach, surface-functionalized magnetic nanoparticles are incubated with target analytes at 37 °C with agitation for 3 min, and the MPS reading is then taken at the fifth minute. We prove the feasibility of 5 min ultrafast detection of SARS-CoV-2 spike protein with a detection limit below 5 nM (0.2 pmol). Our proposed 5-min bioassay strategy may be applied to reduce the assay time for other liquid-phase, volumetric biosensors such as NMR, quantum dots, fluorescent biosensors, etc.

2.
J Air Waste Manag Assoc ; 68(8): 824-835, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29630469

RESUMO

The Handix Scientific open-path cavity ringdown spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne's cavity-attenuated phase shift particulate matter extinction monitor [CAPS PMex]). Derived hygroscopicity (relative humidity [RH] < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern United States. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016-possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high-time-resolution OPCRDS+CAPS PMex data, and the κext model was more accurate than the gamma model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average, IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction. IMPLICATIONS: Although light extinction, which is directly related to visibility, is not directly measured in U.S. National Parks, existing IMPROVE protocols can be used to accurately infer visibility for average humidity conditions, but during the large fraction of the year when humidity is above or below average, accuracy is reduced substantially. Furthermore, nephelometers, which are used to assess the accuracy of IMPROVE visibility estimates, may themselves be biased low when humidity is very high. Despite reductions in organic and sulfate particles since the 1990s, hygroscopicity, particles' affinity for water, appears unchanged, although this conclusion is weakened by the previously mentioned nephelometer limitations.


Assuntos
Monitoramento Ambiental/métodos , Umidade , Nefelometria e Turbidimetria/métodos , Aerossóis/análise , Colorado , Conservação dos Recursos Naturais , Óptica e Fotônica , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Tennessee , Água
3.
Proc Natl Acad Sci U S A ; 114(27): 6984-6989, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630318

RESUMO

On-road gasoline vehicles are a major source of secondary organic aerosol (SOA) in urban areas. We investigated SOA formation by oxidizing dilute, ambient-level exhaust concentrations from a fleet of on-road gasoline vehicles in a smog chamber. We measured less SOA formation from newer vehicles meeting more stringent emissions standards. This suggests that the natural replacement of older vehicles with newer ones that meet more stringent emissions standards should reduce SOA levels in urban environments. However, SOA production depends on both precursor concentrations (emissions) and atmospheric chemistry (SOA yields). We found a strongly nonlinear relationship between SOA formation and the ratio of nonmethane organic gas to oxides of nitrogen (NOx) (NMOG:NOx), which affects the fate of peroxy radicals. For example, changing the NMOG:NOx from 4 to 10 ppbC/ppbNOx increased the SOA yield from dilute gasoline vehicle exhaust by a factor of 8. We investigated the implications of this relationship for the Los Angeles area. Although organic gas emissions from gasoline vehicles in Los Angeles are expected to fall by almost 80% over the next two decades, we predict no reduction in SOA production from these emissions due to the effects of rising NMOG:NOx on SOA yields. This highlights the importance of integrated emission control policies for NOx and organic gases.

4.
Environ Sci Technol ; 51(3): 1074-1093, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28000440

RESUMO

Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.


Assuntos
Gasolina , Emissões de Veículos , Aerossóis , Poluentes Atmosféricos , Veículos Automotores , Compostos Orgânicos
5.
Proc Natl Acad Sci U S A ; 111(29): 10473-8, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002466

RESUMO

Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10-20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y(-1) of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos/análise , Atmosfera/química , Metano/análise , Smog/análise , Estados Unidos , Emissões de Veículos/análise
6.
Environ Sci Technol ; 47(24): 14137-46, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24261886

RESUMO

Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.


Assuntos
Aerossóis/análise , Gases/química , Gasolina/análise , Veículos Off-Road , Compostos Orgânicos/análise , Material Particulado/química , Los Angeles , Metano/análise , Smog/análise , Emissões de Veículos/análise
7.
Environ Sci Technol ; 47(15): 8288-96, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23786154

RESUMO

Experiments were performed to investigate the gas-particle partitioning of primary organic aerosol (POA) emissions from two medium-duty (MDDV) and three heavy-duty (HDDV) diesel vehicles. Each test was conducted on a chassis dynamometer with the entire exhaust sampled into a constant volume sampler (CVS). The vehicles were operated over a range of driving cycles (transient, high-speed, creep/idle) on different ultralow sulfur diesel fuels with varying aromatic content. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: artifact correction of quartz filter samples, dilution from the CVS into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry (TD-GC-MS) analysis of quartz filter samples. During tests of vehicles not equipped with diesel particulate filters (DPF), POA concentrations inside the CVS were a factor of 10 greater than ambient levels, which created large and systematic partitioning biases in the emissions data. For low-emitting DPF-equipped vehicles, as much as 90% of the POA collected on a quartz filter from the CVS were adsorbed vapors. Although the POA emission factors varied by more than an order of magnitude across the set of test vehicles, the measured gas-particle partitioning of all emissions can be predicted using a single volatility distribution derived from TD-GC-MS analysis of quartz filters. This distribution is designed to be applied directly to quartz filter data that are the basis for existing emissions inventories and chemical transport models that have implemented the volatility basis set approach.


Assuntos
Aerossóis/química , Emissões de Veículos , Cromatografia Gasosa-Espectrometria de Massas , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA