Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 98(3): 634-642, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33124691

RESUMO

Inadequately designed culverts can be physical barriers to fish passage if they increase the velocity of water flow in the environment, alter natural turbulence patterns or fail to provide adequate water depth. They may also act as behavioural barriers to fish passage if they affect the willingness of fish species to enter or pass through the structure due to altered ambient light conditions. To understand how reduced light intensity might affect fish behaviour in culverts, the authors performed a behavioural choice experiment quantifying the amount of time individual fish spent in dark and illuminated areas of a controlled experimental channel. They found that behavioural responses were largely reflective of the species' diel activity patterns; the diurnal species Craterocephalus stercusmuscarum and Retropinna semoni preferred illuminated regions, whereas the nocturnal/crepuscular Macquaria novemaculeata preferred the darkened region of the channel. Bidyanus bidyanus were strongly rheotactic, and their behaviour was influenced more by water flow direction than ambient light level. The authors then determined that a threshold light intensity of only c. 100-200 lx (cf. midday sunlight c. 100,000 lx) was required to overcome the behavioural barrier in c. 70% of the diurnally active C. stercusmuscarum and R. semoni tested. When these values were placed into an environmental context, 15 road-crossing (3.4-7.0 m long) box (c. 1 m × 1 m, height × width) and pipe (c. 1 m diameter) culverts sampled in Brisbane, Australia, recorded light intensities in the centre of the structure that were below the threshold for C. stercusmuscarum and R. semoni movement and could potentially be a barrier to their passage through the structure. Attention is required to better understand the impacts of low light intensity in culverts on fish passage and to prioritize restoration.


Assuntos
Aprendizagem da Esquiva/efeitos da radiação , Ecossistema , Peixes/fisiologia , Luz , Animais , Austrália , Comportamento de Escolha/efeitos da radiação
2.
Conserv Physiol ; 5(1): cox034, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28567285

RESUMO

Worldwide declines in riverine fish abundance and diversity have been linked to the fragmentation of aquatic habitats through the installation of instream structures (e.g. culverts, dams, weirs and barrages). Restoring riverine connectivity can be achieved by remediating structures impeding fish movements by, for example, replacing smooth substrates of pipe culverts with naturalistic substrates (i.e. river stones; culvert roughening). However, empirical evaluations of the efficacy of such remediation efforts are often lacking despite the high economic cost. We assessed the effectiveness of substrate roughening in improving fish swimming performance and linked this to estimates of upstream passage success. Critical swimming speeds (Ucrit) of two small-bodied fish, purple-spotted gudgeon (Mogurnda adspersa; 7.7-11.6 cm total length, BL) and crimson-spotted rainbowfish (Melanotaenia duboulayi; 4.2-8.7 cm BL) were examined. Swimming trials were conducted in a hydraulic flume fitted with either a smooth acrylic substrate (control) or a rough substrate with fixed river stones. Swimming performance was improved on the rough compared to the smooth substrate, with Mo. adspersa (Ucrit-smooth = 0.28 ± 0.0 m s-1, 2.89 ± 0.1 BL s-1, Ucrit-rough = 0.36 ± 0.02 m s-1, 3.66 ± 0.22 BL s-1, mean ± s.e) and Me. duboulayi (Ucrit-smooth = 0.46 ± 0.01 m s-1, 7.79 ± 0.33 BL s-1; Ucrit-rough = = 0.55 ± 0.03 m s-1, 9.83 ± 0.67 BL s-1, mean ± s.e.) both experiencing a 26% increase in relative Ucrit. Traversable water velocity models predicted maximum water speeds allowing successful upstream passage of both species to substantially increase following roughening remediation. Together these findings suggest culvert roughening may be a solution which allows hydraulic efficiency goals to be met, without compromising fish passage.

3.
Physiol Biochem Zool ; 81(3): 301-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18419556

RESUMO

Locomotion is a common measure of performance used in studies of thermal acclimation because of its correlation with predator escape and prey capture. However, for sedentary animals such as freshwater turtles, we propose that diving behavior may be a more ecologically relevant measure of performance. Increasing dive duration in hatchling turtles reduces predator exposure and therefore functions as an ecological benefit. Diving behavior is thermally dependent, and in some species of freshwater turtles, it is also reliant on aquatic respiration. This study examined the influence of thermal acclimation on diving behavior, aquatic respiration, and locomotor performance in the endangered, bimodally respiring Mary River turtle Elusor macrurus. Diving behavior was found to partially acclimate at 17 degrees C, with turtles acclimated to a cold temperature (17 degrees C) having a significantly longer dive duration than hatchlings acclimated to a warm temperature (28 degrees C). This increase in dive duration at 17 degrees C was not a result of physiological alterations in metabolic rate but was due instead to an increase in aquatic oxygen consumption. Increasing aquatic oxygen consumption permitted cold-acclimated hatchlings to remain submerged for significantly longer periods, with one turtle undertaking a dive of over 2.5 d. When burst-swimming speed was used as the measure of performance, thermal acclimation was not detected. Overall, E. macrurus demonstrated a partial ability to acclimate to changes in environmental temperature.


Assuntos
Mergulho/fisiologia , Atividade Motora/fisiologia , Tartarugas/fisiologia , Aclimatação/fisiologia , Animais , Metabolismo Energético/fisiologia , Respiração , Natação/fisiologia , Temperatura
4.
J Comp Physiol B ; 176(1): 65-73, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16235043

RESUMO

Changes in heart rate (f(H)) and cloacal ventilation frequency (f(C)) were investigated in the Fitzroy turtle, Rheodytes leukops, under normoxic (17.85 kPa) and hypoxic (3.79 kPa) conditions at 25 degrees C. Given R. leukops' high reliance on aquatic respiration via the cloacal bursae, the objective of this study was to examine the effect of varying aquatic PO(2) levels upon the expression of a bradycardia in a freely diving, bimodally respiring turtle. In normoxia, mean diving f(H) and f(C) for R. leukops remained constant with increasing submergence length, indicating that a bradycardia failed to develop during extended dives of up to 3 days. Alternatively, exposure to aquatic hypoxia resulted in the expression of a bradycardia as recorded by a decreasing mean diving f(H) with increasing dive duration. The observed bradycardia is attributed to a hypoxic-induced metabolic depression, possibly facilitated by a concurrent decrease in f(C). Results suggest that R. leukops alters its strategy from aquatic O(2) extraction via cloacal respiration in normoxia to O(2) conservation when exposed to aquatic hypoxia for the purpose of extending dive duration. Upon surfacing, a significant tachycardia was observed for R. leukops regardless of aquatic PO(2), presumably functioning to rapidly equilibrate blood and tissue gas tensions with alveolar gas to reduce surfacing duration.


Assuntos
Cloaca/fisiologia , Oxigênio/fisiologia , Respiração , Tartarugas/fisiologia , Animais , Mergulho , Feminino , Água Doce , Frequência Cardíaca , Pressão Parcial
5.
J Exp Biol ; 207(Pt 17): 3099-107, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15277564

RESUMO

This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth.


Assuntos
Mergulho/fisiologia , Atividade Motora/fisiologia , Respiração , Tartarugas/fisiologia , Movimentos da Água , Animais , Pesos e Medidas Corporais , Água Doce , Consumo de Oxigênio/fisiologia , Queensland , Fatores de Tempo
6.
J Comp Physiol B ; 174(4): 347-54, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15034732

RESUMO

Changes in blood-gas, acid-base, and plasma-ion status were investigated in the bimodally respiring turtle, Rheodytes leukops, during prolonged dives of up to 12 h. Given that R. leukops routinely submerges for several hours, the objective of this study was to determine whether voluntarily diving turtles remain aerobic and simultaneously avoid hypercapnic conditions over increasing dive lengths. Blood PO(2), PCO(2), and pH, as well as plasma concentrations of lactate, glucose, Na(+), K(+), Cl(-), total Ca, and total Mg were determined in venous blood collected from the occipital sinus. Blood PO(2) declined significantly with dive length; however, oxy-haemoglobin saturation remained greater than 30% for all R. leukops sampled. No changes were observed in blood PCO(2), pH, [HCO(3)(-)], or plasma glucose, with increasing dive length. Despite repeated dives lasting more than 2 h, plasma lactate remained less than 3 mmol l(-1) for all R. leukops sampled, indicating the absence of anaerobiosis. Compensatory acid-base adjustments associated with anaerobiosis (e.g. declining [Cl(-)], increasing total [Ca] and [Mg]) were likewise absent, with plasma-ion concentrations remaining stable with increasing dive length. Results indicate that R. leukops utilises aquatic respiration to remain aerobic during prolonged dives, thus effectively avoiding the development of a metabolic and respiratory acidosis.


Assuntos
Equilíbrio Ácido-Base/fisiologia , Mergulho , Respiração , Tartarugas/fisiologia , Animais , Análise Química do Sangue , Gasometria , Água Doce , Oxigênio/sangue , Esforço Físico/fisiologia , Queensland , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA