Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Synth Biol (Oxf) ; 9(1): ysae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38973982

RESUMO

Data science is playing an increasingly important role in the design and analysis of engineered biology. This has been fueled by the development of high-throughput methods like massively parallel reporter assays, data-rich microscopy techniques, computational protein structure prediction and design, and the development of whole-cell models able to generate huge volumes of data. Although the ability to apply data-centric analyses in these contexts is appealing and increasingly simple to do, it comes with potential risks. For example, how might biases in the underlying data affect the validity of a result and what might the environmental impact of large-scale data analyses be? Here, we present a community-developed framework for assessing data hazards to help address these concerns and demonstrate its application to two synthetic biology case studies. We show the diversity of considerations that arise in common types of bioengineering projects and provide some guidelines and mitigating steps. Understanding potential issues and dangers when working with data and proactively addressing them will be essential for ensuring the appropriate use of emerging data-intensive AI methods and help increase the trustworthiness of their applications in synthetic biology.

4.
Nucleic Acids Res ; 52(13): e58, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38864396

RESUMO

Model-guided DNA sequence design can accelerate the reprogramming of living cells. It allows us to engineer more complex biological systems by removing the need to physically assemble and test each potential design. While mechanistic models of gene expression have seen some success in supporting this goal, data-centric, deep learning-based approaches often provide more accurate predictions. This accuracy, however, comes at a cost - a lack of generalization across genetic and experimental contexts that has limited their wider use outside the context in which they were trained. Here, we address this issue by demonstrating how a simple transfer learning procedure can effectively tune a pre-trained deep learning model to predict protein translation rate from 5' untranslated region (5'UTR) sequence for diverse contexts in Escherichia coli using a small number of new measurements. This allows for important model features learnt from expensive massively parallel reporter assays to be easily transferred to new settings. By releasing our trained deep learning model and complementary calibration procedure, this study acts as a starting point for continually refined model-based sequence design that builds on previous knowledge and future experimental efforts.


Assuntos
Regiões 5' não Traduzidas , Aprendizado Profundo , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas
5.
Biodes Res ; 6: 0037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919711

RESUMO

Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.

6.
J R Soc Interface ; 21(213): 20240078, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593842

RESUMO

Biofilms are responsible for most chronic infections and are highly resistant to antibiotic treatments. Previous studies have demonstrated that periodic dosing of antibiotics can help sensitize persistent subpopulations and reduce the overall dosage required for treatment. Because the dynamics and mechanisms of biofilm growth and the formation of persister cells are diverse and are affected by environmental conditions, it remains a challenge to design optimal periodic dosing regimens. Here, we develop a computational agent-based model to streamline this process and determine key parameters for effective treatment. We used our model to test a broad range of persistence switching dynamics and found that if periodic antibiotic dosing was tuned to biofilm dynamics, the dose required for effective treatment could be reduced by nearly 77%. The biofilm architecture and its response to antibiotics were found to depend on the dynamics of persister cells. Despite some differences in the response of biofilm governed by different persister switching rates, we found that a general optimized periodic treatment was still effective in significantly reducing the required antibiotic dose. As persistence becomes better quantified and understood, our model has the potential to act as a foundation for more effective strategies to target bacterial infections.


Assuntos
Bactérias , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes
7.
Nat Commun ; 15(1): 3640, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684714

RESUMO

Careful consideration of how we approach design is crucial to all areas of biotechnology. However, choosing or developing an effective design methodology is not always easy as biology, unlike most areas of engineering, is able to adapt and evolve. Here, we put forward that design and evolution follow a similar cyclic process and therefore all design methods, including traditional design, directed evolution, and even random trial and error, exist within an evolutionary design spectrum. This contrasts with conventional views that often place these methods at odds and provides a valuable framework for unifying engineering approaches for challenging biological design problems.


Assuntos
Evolução Molecular Direcionada , Bioengenharia/métodos , Evolução Biológica , Biotecnologia/métodos , Evolução Molecular Direcionada/métodos , Biologia Sintética/métodos
8.
J Microbio Robot ; 20(1): 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616892

RESUMO

The ability to optically interact with cells on both an individual and collective level has applications from wound healing to cancer treatment. Building systems that can facilitate both localised light illumination and visualisation of cells can, however, be challenging and costly. This work takes the Dynamic Optical MicroEnvironment (DOME), an existing platform for the closed-loop optical control of microscale agents, and adapts the design to support live-cell imaging. Through modifications made to the imaging and projection systems within the DOME, a significantly higher resolution, alternative imaging channels and the ability to customise light wavelengths are achieved (Bio-DOME). This is accompanied by an interactive calibration procedure that is robust to changes in the hardware configuration and provides fluorescence imaging (Fluoro-DOME). These alterations to the fundamental design allow for long-term use of the DOME in an environment of higher temperature and humidity. Thus, long-term imaging of living cells in a wound, with closed-loop control of real-time frontier illumination via projected light patterns, is facilitated. Supplementary Information: The online version contains supplementary material available at 10.1007/s12213-024-00165-0.

9.
Sci Adv ; 10(3): eadi3621, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241375

RESUMO

Design in synthetic biology is typically goal oriented, aiming to repurpose or optimize existing biological functions, augmenting biology with new-to-nature capabilities, or creating life-like systems from scratch. While the field has seen many advances, bottlenecks in the complexity of the systems built are emerging and designs that function in the lab often fail when used in real-world contexts. Here, we propose an open-ended approach to biological design, with the novelty of designed biology being at least as important as how well it fulfils its goal. Rather than solely focusing on optimization toward a single best design, designing with novelty in mind may allow us to move beyond the diminishing returns we see in performance for most engineered biology. Research from the artificial life community has demonstrated that embracing novelty can automatically generate innovative and unexpected solutions to challenging problems beyond local optima. Synthetic biology offers the ideal playground to explore more creative approaches to biological design.


Assuntos
Evolução Biológica , Biologia Sintética , Estudos Longitudinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA