RESUMO
The generation and maintenance of protective immunity is a dynamic interplay between host and environment that is impacted by age. Understanding fundamental changes in the healthy immune system that occur over a lifespan is critical in developing interventions for age-related susceptibility to infections and diseases. Here, we use multi-omic profiling (scRNA-seq, proteomics, flow cytometry) to examined human peripheral immunity in over 300 healthy adults, with 96 young and older adults followed over two years with yearly vaccination. The resulting resource includes scRNA-seq datasets of >16 million PBMCs, interrogating 71 immune cell subsets from our new Immune Health Atlas. This study allows unique insights into the composition and transcriptional state of immune cells at homeostasis, with vaccine perturbation, and across age. We find that T cells specifically accumulate age-related transcriptional changes more than other immune cells, independent from inflammation and chronic perturbation. Moreover, impaired memory B cell responses to vaccination are linked to a Th2-like state shift in older adults' memory CD4 T cells, revealing possible mechanisms of immune dysregulation during healthy human aging. This extensive resource is provided with a suite of exploration tools at https://apps.allenimmunology.org/aifi/insights/dynamics-imm-health-age/ to enhance data accessibility and further the understanding of immune health across age.
RESUMO
Memory T cells are a highly dynamic and heterogeneous population that is maintained by cytokine-driven homeostatic proliferation interspersed with episodes of antigen-mediated expansion and contraction which affect their functional state and their durability. This heterogeneity complicates studies on the impact of aging on global human memory cells, specifically, it is unclear how aging drives memory T cell dysfunction. Here, we used chronic infection with Epstein-Barr virus (EBV) to assess the influence of age on memory states at the level of antigen-specific CD8 + T cells. We find that in young adults (<40 years), EBV-specific CD8 + T cells assume preferred differentiation states depending on their peptide specificity. By age >65-years, different T cell specificities had undergone largely distinct aging trajectories, which had in common a loss in adaptive and a gain in innate immunity signatures. No evidence was seen for cellular senescence or exhaustion. While naïve/stem-like EBV-specific T cells disappeared with age, T cell diversity of EBV-specific memory cells did not change or even increased. In summary, by controlling for antigen specificity we uncover age-associated shifts in gene expression and TCR diversity that have implications for optimizing vaccination strategies and adoptive T cell therapy.
RESUMO
IgG4-related disease (IgG4-RD) is a systemic immune-mediated fibroinflammatory disease whose pathomechanisms remain poorly understood. Here, we identified gene variants in familial IgG4-RD and determined their functional consequences. All 3 affected members of the family shared variants of the transcription factor IKAROS, encoded by IKZF1, and the E3 ubiquitin ligase UBR4. The IKAROS variant increased binding to the FYN promoter, resulting in higher transcription of FYN in T cells. The UBR4 variant prevented the lysosomal degradation of the phosphatase CD45. In the presence of elevated FYN, CD45 functioned as a positive regulatory loop, lowering the threshold for T cell activation. Consequently, T cells from the affected family members were hyperresponsive to stimulation. When transduced with a low-avidity, autoreactive T cell receptor, their T cells responded to the autoantigenic peptide. In parallel, high expression of FYN in T cells biased their differentiation toward Th2 polarization by stabilizing the transcription factor JunB. This bias was consistent with the frequent atopic manifestations in patients with IgG4-RD, including the affected family members in the present study. Building on the functional consequences of these 2 variants, we propose a disease model that is not only instructive for IgG4-RD but also for atopic diseases and autoimmune diseases associated with an IKZF1 risk haplotype.
Assuntos
Autoimunidade , Fator de Transcrição Ikaros , Células Th2 , Ubiquitina-Proteína Ligases , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoimunidade/genética , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/imunologia , Doença Relacionada a Imunoglobulina G4/genética , Doença Relacionada a Imunoglobulina G4/imunologia , Doença Relacionada a Imunoglobulina G4/patologia , Linhagem , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/imunologia , Células Th2/imunologia , Células Th2/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologiaRESUMO
Giant cell arteritis (GCA) is a prototypic autoimmune disease with a highly selective tissue tropism for medium and large arteries. Extravascular GCA manifests with intense systemic inflammation and polymyalgia rheumatica; vascular GCA results in vessel wall damage and stenosis, causing tissue ischemia. Typical granulomatous infiltrates in affected arteries are composed of CD4+ T cells and hyperactivated macrophages, signifying the involvement of the innate and adaptive immune system. Lesional CD4+ T cells undergo antigen-dependent clonal expansion, but antigen-nonspecific pathways ultimately control the intensity and duration of pathogenic immunity. Patient-derived CD4+ T cells receive strong co-stimulatory signals through the NOTCH1 receptor and the CD28/CD80-CD86 pathway. In parallel, co-inhibitory signals, designed to dampen overshooting T cell immunity, are defective, leaving CD4+ T cells unopposed and capable of supporting long-lasting and inappropriate immune responses. Based on recent data, two inhibitory checkpoints are defective in GCA: the Programmed death-1 (PD-1)/Programmed cell death ligand 1 (PD-L1) checkpoint and the CD96/CD155 checkpoint, giving rise to the "lost inhibition concept". Subcellular and molecular analysis has demonstrated trapping of the checkpoint ligands in the endoplasmic reticulum, creating PD-L1low CD155low antigen-presenting cells. Uninhibited CD4+ T cells expand, release copious amounts of the cytokine Interleukin (IL)-9, and differentiate into long-lived effector memory cells. These data place GCA and cancer on opposite ends of the co-inhibition spectrum, with cancer patients developing immune paralysis due to excessive inhibitory checkpoints and GCA patients developing autoimmunity due to nonfunctional inhibitory checkpoints.
Assuntos
Arterite de Células Gigantes , Humanos , Arterite de Células Gigantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Doenças Autoimunes/imunologia , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/imunologia , Proteínas de Checkpoint Imunológico/imunologiaRESUMO
The human adult immune system maintains normal T cell counts and compensates for T cell loss throughout life, mainly through peripheral homeostatic proliferation after the ability of the thymus to generate new T cells has rapidly declined at adolescence. This process is mainly driven by STAT5-activating cytokines, most importantly IL-7, and is very effective in maintaining a large naive CD4+ T cell compartment into older age. Here, we describe that naive CD4+ T cells undergo adaptations to optimize IL-7 responses by upregulating the guanine-nucleotide exchange factor PREX1 in older age. PREX1 promotes nuclear translocation of phosphorylated STAT5, thereby supporting homeostatic proliferation in response to IL-7. Through the same mechanism, increased expression of PREX1 also biases naive cells to differentiate into effector T cells. These findings are consistent with the concept that primarily beneficial adaptations during aging, i.e., improved homeostasis, account for unfavorable functions of the aged immune system, in this case biased differentiation.
Assuntos
Linfócitos T CD4-Positivos , Fator de Transcrição STAT5 , Adulto , Humanos , Idoso , Fator de Transcrição STAT5/metabolismo , Interleucina-7/metabolismo , Proliferação de Células , Homeostase , Fatores de Troca do Nucleotídeo Guanina/metabolismoRESUMO
Autoimmune vasculitis of the medium and large elastic arteries can cause blindness, stroke, aortic arch syndrome, and aortic aneurysm. The disease is often refractory to immunosuppressive therapy and progresses over decades as smoldering aortitis. How the granulomatous infiltrates in the vessel wall are maintained and how tissue-infiltrating T cells and macrophages are replenished are unknown. Single-cell and whole-tissue transcriptomic studies of immune cell populations in vasculitic arteries identified a CD4+ T cell population with stem cell-like features. CD4+ T cells supplying the tissue-infiltrating and tissue-damaging effector T cells survived in tertiary lymphoid structures around adventitial vasa vasora, expressed the transcription factor T cell factor 1 (TCF1), had high proliferative potential, and gave rise to two effector populations, Eomesodermin (EOMES)+ cytotoxic T cells and B cell lymphoma 6 (BCL6)+ T follicular helper-like cells. TCF1hiCD4+ T cells expressing the interleukin 7 receptor (IL-7R) sustained vasculitis in serial transplantation experiments. Thus, TCF1hiCD4+ T cells function as disease stem cells and promote chronicity and autonomy of autoimmune tissue inflammation. Remission-inducing therapies will require targeting stem-like CD4+ T cells instead of only effector T cells.
Assuntos
Estruturas Linfoides Terciárias , Vasculite , Humanos , Artérias , Inflamação , Linfócitos T CD4-PositivosRESUMO
Immune memory is a requisite and remarkable property of the immune system and is the biological foundation of the success of vaccinations in reducing morbidity from infectious diseases. Some vaccines and infections induce long-lasting protection, but immunity to other vaccines and particularly in older adults rarely persists over long time periods. Failed induction of an immune response and accelerated waning of immune memory both contribute to the immuno-compromised state of the older population. Here we review how T cell memory is influenced by age. T cell memory is maintained by a dynamic population of T cells that are heterogeneous in their kinetic parameters under homeostatic condition and their function. Durability of T cell memory can be influenced not only by the loss of a clonal progeny, but also by broader changes in the composition of functional states and transition of T cells to a dysfunctional state. Genome-wide single cell studies on total T cells have started to provide insights on the influence of age on cell heterogeneity over time. The most striking findings were a trend to progressive effector differentiation and the activation of pro-inflammatory pathways, including the emergence of CD4+ and CD8+ cytotoxic subsets. Genome-wide data on antigen-specific memory T cells are currently limited but can be expected to provide insights on how changes in T cell subset heterogeneity and transcriptome relate to durability of immune protection.
Assuntos
Memória Imunológica , Células T de Memória , Diferenciação Celular , HomeostaseRESUMO
Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.
Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Idoso , Envelhecimento , Senescência Celular/fisiologia , Linfócitos T , InflamaçãoRESUMO
The defense against infectious diseases, either through natural immunity or after vaccinations, relies on the generation and maintenance of protective T cell memory. Naïve T cells are at the center of memory T cell generation during primary responses. Upon activation, they undergo a complex, highly regulated differentiation process towards different functional states. Naïve T cells maintained into older age have undergone epigenetic adaptations that influence their fate decisions during differentiation. We review age-sensitive, molecular pathways and gene regulatory networks that bias naïve T cell differentiation towards effector cell generation at the expense of memory and Tfh cells. As a result, T cell differentiation in older adults is associated with release of bioactive waste products into the microenvironment, higher stress sensitivity as well as skewing towards pro-inflammatory signatures and shorter life spans. These maladaptations not only contribute to poor vaccine responses in older adults but also fuel a more inflammatory state.
Assuntos
Memória Imunológica , Linfócitos T , Humanos , Idoso , Diferenciação Celular , Envelhecimento , Ativação Linfocitária , Linfócitos T CD8-PositivosRESUMO
Harnessing the immunogenic potential of senescent cells may be a viable but context-dependent opportunity to boost antitumor immunity.
Assuntos
Senescência Celular , Imunidade , Neoplasias , Neoplasias/imunologiaRESUMO
Loss of function of inhibitory immune checkpoints, unleashing pathogenic immune responses, is a potential risk factor for autoimmune disease. Here, we report that patients with the autoimmune vasculitis giant cell arteritis (GCA) have a defective CD155-CD96 immune checkpoint. Macrophages from patients with GCA retain the checkpoint ligand CD155 in the endoplasmic reticulum (ER) and fail to bring it to the cell surface. CD155low antigen-presenting cells induce expansion of CD4+CD96+ T cells, which become tissue invasive, accumulate in the blood vessel wall, and release the effector cytokine interleukin-9 (IL-9). In a humanized mouse model of GCA, recombinant human IL-9 causes vessel wall destruction, whereas anti-IL-9 antibodies efficiently suppress innate and adaptive immunity in the vasculitic lesions. Thus, defective surface translocation of CD155 creates antigen-presenting cells that deviate T cell differentiation toward Th9 lineage commitment and results in the expansion of vasculitogenic effector T cells.
Assuntos
Arterite de Células Gigantes , Camundongos , Animais , Humanos , Arterite de Células Gigantes/metabolismo , Arterite de Células Gigantes/patologia , Citocinas/metabolismo , Linfócitos T , Imunidade Adaptativa , Antígenos CD/metabolismoRESUMO
Chronic systemic inflammation is one of the hallmarks of the aging immune system. Here we show that activated T cells from older adults contribute to inflammaging by releasing mitochondrial DNA (mtDNA) into their environment due to an increased expression of the cytokine-inducible SH2-containing protein (CISH). CISH targets ATP6V1A, an essential component of the proton pump V-ATPase, for proteasomal degradation, thereby impairing lysosomal function. Impaired lysosomal activity caused intracellular accumulation of multivesicular bodies and amphisomes and the export of their cargos, including mtDNA. CISH silencing in T cells from older adults restored lysosomal activity and prevented amphisomal release. In antigen-specific responses in vivo, CISH-deficient CD4+ T cells released less mtDNA and induced fewer inflammatory cytokines. Attenuating CISH expression may present a promising strategy to reduce inflammation in an immune response of older individuals.
Assuntos
Citocinas , DNA Mitocondrial , Idoso , Humanos , Citocinas/metabolismo , DNA Mitocondrial/genética , Inflamação/genética , Lisossomos/metabolismoRESUMO
Naive CD4+ T cells are more resistant to age-related loss than naive CD8+ T cells, suggesting mechanisms that preferentially protect naive CD4+ T cells during aging. Here, we show that TRIB2 is more abundant in naive CD4+ than CD8+ T cells and counteracts quiescence exit by suppressing AKT activation. TRIB2 deficiency increases AKT activity and accelerates proliferation and differentiation in response to interleukin-7 (IL-7) in humans and during lymphopenia in mice. TRIB2 transcription is controlled by the lineage-determining transcription factors ThPOK and RUNX3. Ablation of Zbtb7b (encoding ThPOK) and Cbfb (obligatory RUNT cofactor) attenuates the difference in lymphopenia-induced proliferation between naive CD4+ and CD8+ cells. In older adults, ThPOK and TRIB2 expression wanes in naive CD4+ T cells, causing loss of naivety. These findings assign TRIB2 a key role in regulating T cell homeostasis and provide a model to explain the lesser resilience of CD8+ T cells to undergo changes with age.
Assuntos
Linfócitos T CD8-Positivos , Linfopenia , Idoso , Animais , Humanos , Camundongos , Envelhecimento , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Homeostase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Giant cell arteritis is an autoimmune disease of medium and large arteries, characterized by granulomatous inflammation of the three-layered vessel wall that results in vaso-occlusion, wall dissection, and aneurysm formation. The immunopathogenesis of giant cell arteritis is an accumulative process in which a prolonged asymptomatic period is followed by uncontrolled innate immunity, a breakdown in self-tolerance, the transition of autoimmunity from the periphery into the vessel wall and, eventually, the progressive evolution of vessel wall inflammation. Each of the steps in pathogenesis corresponds to specific immuno-phenotypes that provide mechanistic insights into how the immune system attacks and damages blood vessels. Clinically evident disease begins with inappropriate activation of myeloid cells triggering the release of hepatic acute phase proteins and inducing extravascular manifestations, such as muscle pains and stiffness diagnosed as polymyalgia rheumatica. Loss of self-tolerance in the adaptive immune system is linked to aberrant signaling in the NOTCH pathway, leading to expansion of NOTCH1+CD4+ T cells and the functional decline of NOTCH4+ T regulatory cells (Checkpoint 1). A defect in the endothelial cell barrier of adventitial vasa vasorum networks marks Checkpoint 2; the invasion of monocytes, macrophages and T cells into the arterial wall. Due to the failure of the immuno-inhibitory PD-1 (programmed cell death protein 1)/PD-L1 (programmed cell death ligand 1) pathway, wall-infiltrating immune cells arrive in a permissive tissues microenvironment, where multiple T cell effector lineages thrive, shift toward high glycolytic activity, and support the development of tissue-damaging macrophages, including multinucleated giant cells (Checkpoint 3). Eventually, the vascular lesions are occupied by self-renewing T cells that provide autonomy to the disease process and limit the therapeutic effectiveness of currently used immunosuppressants. The multi-step process deviating protective to pathogenic immunity offers an array of interception points that provide opportunities for the prevention and therapeutic management of this devastating autoimmune disease.
Assuntos
Arterite de Células Gigantes , Humanos , Inflamação/metabolismo , Artérias/metabolismo , Imunidade Inata , Células Gigantes/metabolismoRESUMO
Immune aging combines cellular defects in adaptive immunity with the activation of pathways causing a low-inflammatory state. Here we examined the influence of age on the kinetic changes in the epigenomic and transcriptional landscape induced by T cell receptor (TCR) stimulation in naive CD4+ T cells. Despite attenuated TCR signaling in older adults, TCR activation accelerated remodeling of the epigenome and induced transcription factor networks favoring effector cell differentiation. We identified increased phosphorylation of STAT5, at least in part due to aberrant IL-2 receptor and lower HELIOS expression, as upstream regulators. Human HELIOS-deficient, naive CD4+ T cells, when transferred into human-synovium-mouse chimeras, infiltrated tissues more efficiently. Inhibition of IL-2 or STAT5 activity in T cell responses of older adults restored the epigenetic response pattern to the one seen in young adults. In summary, reduced HELIOS expression in non-regulatory naive CD4+ T cells in older adults directs T cell fate decisions toward inflammatory effector cells that infiltrate tissue.
Assuntos
Envelhecimento , Linfócitos T CD4-Positivos , Fator de Transcrição Ikaros , Idoso , Animais , Humanos , Camundongos , Adulto Jovem , Envelhecimento/imunologia , Envelhecimento/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Montagem e Desmontagem da Cromatina , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Fator de Transcrição STAT5 , Fator de Transcrição Ikaros/metabolismoRESUMO
Mitochondria are the controllers of cell metabolism and are recognized as decision makers in cell death pathways, organizers of cytoplasmic signaling networks, managers of cellular stress responses, and regulators of nuclear gene expression. Cells of the immune system are particularly dependent on mitochondrial resources, as they must swiftly respond to danger signals with activation, trafficking, migration, and generation of daughter cells. Analogously, faulty immune responses that lead to autoimmunity and tissue inflammation rely on mitochondria to supply energy, cell building blocks and metabolic intermediates. Emerging data endorse the concept that mitochondrial fitness, and the lack of it, is of particular relevance in the autoimmune disease rheumatoid arthritis (RA) where deviations of bioenergetic and biosynthetic flux affect T cells during early and late stages of disease. During early stages of RA, mitochondrial deficiency allows naïve RA T cells to lose self-tolerance, biasing fundamental choices of the immune system toward immune-mediated tissue damage and away from host protection. During late stages of RA, mitochondrial abnormalities shape the response patterns of RA effector T cells engaged in the inflammatory lesions, enabling chronicity of tissue damage and tissue remodeling. In the inflamed joint, autoreactive T cells partner with metabolically reprogrammed tissue macrophages that specialize in antigen-presentation and survive by adapting to the glucose-deplete tissue microenvironment. Here, we summarize recent data on dysfunctional mitochondria and mitochondria-derived signals relevant in the RA disease process that offer novel opportunities to deter autoimmune tissue inflammation by metabolic interference.
Assuntos
Artrite Reumatoide , Humanos , Linfócitos T , Inflamação/metabolismo , Autoimunidade , MitocôndriasRESUMO
Immune aging is a complex process rendering the host susceptible to cancer, infection, and insufficient tissue repair. Many autoimmune diseases preferentially occur during the second half of life, counterintuitive to the concept of excess adaptive immunity driving immune-mediated tissue damage. T cells are particularly susceptible to aging-imposed changes, as they are under extreme proliferative pressure to fulfill the demands of clonal expansion and of homeostatic T cell repopulation. T cells in older adults have a footprint of genetic and epigenetic changes, lack mitochondrial fitness, and fail to maintain proteostasis, diverging them from host protection to host injury. Here, we review recent progress in understanding how the human T-cell system ages and the evidence detailing how T cell aging contributes to autoimmune conditions. T cell aging is now recognized as a risk determinant in two prototypic autoimmune syndromes; rheumatoid arthritis and giant cell arteritis. The emerging concept adds susceptibility to autoimmune and autoinflammatory disease to the spectrum of aging-imposed adaptations and opens new opportunities for immunomodulatory therapy by restoring the functional intactness of aging T cells.
Assuntos
Doenças Autoimunes , Autoimunidade , Humanos , Idoso , Autoimunidade/fisiologia , Linfócitos T , Envelhecimento , Senescência Celular , Fatores de RiscoRESUMO
A breakdown in cellular homeostasis is thought to drive naïve T cell aging, however the link between naïve T cell homeostasis and aging in humans is poorly understood. To better address this, we developed a lymphoid organoid system that maintains resting naïve T cells for more than 2 weeks, in conjunction with high CD45RA expression. Deep phenotypic characterization of naïve T cells across age identified reduced CD45RA density as a hallmark of aging. A conversion from CD45RAhigh naive cells to a CD45RAlow phenotype was reproduced within our organoid system by structural breakdown, but not by stromal cell aging or reduced lymphocyte density, and mediated by alternative CD45 splicing. Together, these data suggest that external influences within the lymph node microenvironment may cause phenotypic conversion of naïve T cells in older adults.