Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Cancer ; 10(1): 8-11, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37973489

RESUMO

Immunogenic cell death (ICD) arouses great interest in targeting glioma, the most common primary brain tumor, to achieve boosted immunotherapy. We discuss the unexpected findings on the induction of Th17 immunity by ICD and propose the best design for dendritic cell (DC)-based vaccines loaded with whole glioma lysates obtained after ICD inducers.


Assuntos
Antineoplásicos , Glioma , Humanos , Morte Celular Imunogênica , Glioma/terapia , Glioma/patologia , Antineoplásicos/farmacologia , Imunoterapia
2.
Front Immunol ; 14: 1303795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124735

RESUMO

Akkermansia muciniphila is a gram-negative anaerobic bacterium, which represents a part of the commensal human microbiota. Decline in the abundance of A. muciniphila among other microbial species in the gut correlates with severe systemic diseases such as diabetes, obesity, intestinal inflammation and colorectal cancer. Due to its mucin-reducing and immunomodulatory properties, the use of probiotics containing Akkermansia sp. appears as a promising approach to the treatment of metabolic and inflammatory diseases. In particular, a number of studies have focused on the role of A. muciniphila in colorectal cancer. Of note, the results of these studies in mice are contradictory: some reported a protective role of A. muciniphila in colorectal cancer, while others demonstrated that administration of A. muciniphila could aggravate the course of the disease resulting in increased tumor burden. More recent studies suggested the immunomodulatory effect of certain unique surface antigens of A. muciniphila on the intestinal immune system. In this Perspective, we attempt to explain how A. muciniphila contributes to protection against colorectal cancer in some models, while being pathogenic in others. We argue that differences in the experimental protocols of administration of A. muciniphila, as well as viability of bacteria, may significantly affect the results. In addition, we hypothesize that antigens presented by pasteurized bacteria or live A. muciniphila may exert distinct effects on the barrier functions of the gut. Finally, A. muciniphila may reduce the mucin barrier and exerts combined effects with other bacterial species in either promoting or inhibiting cancer development.


Assuntos
Neoplasias Colorretais , Mucinas , Humanos , Animais , Camundongos , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA
3.
Cells ; 12(13)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443839

RESUMO

The dynamics of neutrophil transendothelial migration was investigated in a model of experimental septicopyemia. Scanning ion-conductance microscopy allowed us to determine changes in morphometric characteristics of endothelial cells during this process. In the presence of a pyogenic lesion simulated by Staphylococcus aureus, such migration was accompanied by both compensatory reactions and alteration of both neutrophils and endothelial cells. Neutrophils demonstrated crawling along the contact sites between endothelial cells, swarming phenomenon, as well as anergy and formation of neutrophil extracellular traps (NETs) as a normergic state. Neutrophil swarming was accompanied by an increase in the intercellular spaces between endothelial cells. Endothelial cells decreased the area of adhesion to the substrate, which was determined by a decrease in the cell projection area, and the cell membrane was smoothed. However, endothelial cell rigidity was paradoxically unchanged compared to the control. Over time, neutrophil migration led to a more significant alteration of endothelial cells: first, shallow perforations in the membrane were formed, which were repaired rather quickly, then stress fibrils were formed, and finally, endothelial cells died and multiple perforations were formed on their membrane.


Assuntos
Microscopia , Neutrófilos , Migração Transendotelial e Transepitelial , Células Endoteliais , Movimento Celular
4.
Front Immunol ; 14: 1172467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153552

RESUMO

The naked mole-rat (NMR) is a unique long-lived rodent which is highly resistant to age-associated disorders and cancer. The immune system of NMR possesses a distinct cellular composition with the prevalence of myeloid cells. Thus, the detailed phenotypical and functional assessment of NMR myeloid cell compartment may uncover novel mechanisms of immunoregulation and healthy aging. In this study gene expression signatures, reactive nitrogen species and cytokine production, as well as metabolic activity of classically (M1) and alternatively (M2) activated NMR bone marrow-derived macrophages (BMDM) were examined. Polarization of NMR macrophages under pro-inflammatory conditions led to expected M1 phenotype characterized by increased pro-inflammatory gene expression, cytokine production and aerobic glycolysis, but paralleled by reduced production of nitric oxide (NO). Under systemic LPS-induced inflammatory conditions NO production also was not detected in NMR blood monocytes. Altogether, our results indicate that NMR macrophages are capable of transcriptional and metabolic reprogramming under polarizing stimuli, however, NMR M1 possesses species-specific signatures as compared to murine M1, implicating distinct adaptations in NMR immune system.


Assuntos
Citocinas , Macrófagos , Camundongos , Animais , Fenótipo , Citocinas/metabolismo , Ratos-Toupeira
5.
Front Immunol ; 14: 1299064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274827

RESUMO

Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.


Assuntos
Glioma , Microambiente Tumoral , Humanos , Qualidade de Vida , Glioma/terapia , Sistema Nervoso Central , Imunoterapia
6.
Microorganisms ; 10(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144298

RESUMO

Staphylococcus aureus induces the expression of VCAM-1, P- and E-selectins on the endothelial cells of the EA.hy926 cell line but, at the same time, causes the significant suppression of the force and work of adhesion between these receptors of endotheliocytes and the receptors of neutrophils in an experimental septicemia model. Adhesion contacts between the receptors of neutrophils and endotheliocytes are statistically significantly suppressed under non-opsonized and opsonized S. aureus treatment, which disrupts the initial stage of transendothelial migration of neutrophils-adhesion. Thus, S. aureus causes the arrest of neutrophils in the bloodstream in an experimental septicemia model.

7.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166531, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36038040

RESUMO

Asthma is one of the most common chronic diseases. In many cases it is preceded by the development of an immune response to allergens such as animal fur, dust, pollens and etc. In human population this disease is heterogeneous, and no selective drugs are available at the moment for some endotypes of asthma. The role of the adaptive immune system in the pathogenesis of asthma was extensively studied, while the role of innate immune cells, in particular myeloid cells, was not sufficiently addressed. Myeloid cells, such as macrophages and dendritic cells, are characterized by high plasticity, heterogenicity and ability to undergo polarization in response to various pathogenic stimuli, including those engaging innate immune receptors. Recently, special attention was drawn to the link between polarization of macrophages and cell metabolism. We hypothesized that immunometabolic reprogramming of myeloid cells, in particular, of macrophages and dendritic cells during sensitization with an allergen may affect further immune response and asthma development. To test this hypothesis, we generated distinct types of myeloid cells in vitro from murine bone marrow and analyzed their immunometabolic profiles upon activation with house dust mite extract (HDM) and its key active components. We found that the combination of lipopolysaccharide (LPS) and beta-glucan is sufficient to upregulate proinflammatory cytokine production as well as respiratory and glycolytic capacity of myeloid cells, comparably to HDM. This specific immunometabolic phenotype was associated with altered mitochondrial morphology and possibly with increased ROS production in macrophages. Moreover, we found that both TNF production and metabolic remodeling of macrophages in response to HDM are TLR4-dependent processes. Altogether, these results expand our understanding of molecular mechanisms underlying asthma induction and pathogenesis and may potentially lead to new therapeutic strategies for the treatment of this disease.


Assuntos
Asma , beta-Glucanas , Alérgenos , Animais , Asma/metabolismo , Citocinas/metabolismo , Poeira , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Fenótipo , Pyroglyphidae , Espécies Reativas de Oxigênio , Receptor 4 Toll-Like
8.
Immunobiology ; 227(3): 152213, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429697

RESUMO

Previous studies have shown that polyreactive antibodies play an important role in the frontline defense against the dissemination of pathogens in the pre-immune host. Interestingly, antigen-binding polyreactivity can not only be inherent, but also acquired post-translationally. The ability of individual monoclonal IgG and IgE antibodies to acquire polyreactivity following contact with various agents that destabilize protein structure (urea, low pH) or have a pro-oxidative potential (heme, ferrous ions) has been studied in detail. However, to the best of our knowledge this property of human IgA has previously been described only cursorily. In the present study pooled human serum IgA and two human monoclonal IgA antibodies were exposed to buffers with acidic pH, to free heme or to ferrous ions, and the antigen-binding behavior of the native and modified IgA to viral and bacterial antigens were compared using immunoblot and ELISA. We observed a dose-dependent increase in reactivity to several bacterial extracts and to pure viral antigens. This newly described property of IgA may have therapeutic potential as has already been shown for pooled IgG with induced polyreactivity.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Especificidade de Anticorpos , Heme , Humanos , Imunoglobulina A , Íons
9.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408882

RESUMO

Combined anti-cytokine therapy is a promising therapeutic approach for uncontrolled steroid-resistant asthma. In this regard, simultaneous blockade of IL-4 and IL-13 signaling by Dupilumab (anti-IL-4Ra monoclonal antibody) was recently approved for severe eosinophilic asthma. However, no therapeutic options for neutrophilic asthma are currently available. Recent advances in our understanding of asthma pathogenesis suggest that both IL-6 and TNF may represent potential targets for treatment of severe neutrophilic asthma. Nevertheless, the efficacy of simultaneous pharmacological inhibition of TNF and IL-6 in asthma was not yet studied. To evaluate the potency of combined cytokine inhibition, we simultaneously administrated IL-6 and TNF inhibitors to BALB/c mice with HDM-induced asthma. Combined IL-6/TNF inhibition, but not individual blockade of these two cytokines, led to complex anti-inflammatory effects including reduced Th2-induced eosinophilia and less prominent Th17/Th1-mediated neutrophilic infiltrate in the airways. Taken together, our results provide evidence for therapeutic potential of combined IL-6/TNF inhibition in severe steroid-resistant asthma.


Assuntos
Asma , Interleucina-6 , Animais , Citocinas , Modelos Animais de Doenças , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Células Th1 , Células Th17
10.
Pharmacology ; 107(7-8): 341-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34864734

RESUMO

INTRODUCTION: As has been shown previously, various protein-modifying agents can change the antigen-binding properties of immunoglobulins. However, induced polyspecificity of human secretory immunoglobulin A (sIgA) has not been previously characterized in detail. METHODS: In the present study, human secretory immunoglobulin A (IgA) was exposed to buffers with acidic pH, to free heme, or to pro-oxidative ferrous ions, and the antigen-binding behavior of the native and modified IgA to viral and bacterial antigens was compared using Western blotting and enzyme-linked immunosorbent assay. The ability of these agents to modulate the antigen-binding properties of human sIgA toward a wide range of pathogen peptides was investigated using an epitope microarray. RESULTS: We have shown that acidic pH, heme, and pro-oxidative ferrous ions influenced the binding of secretory IgA in opposite directions (either increasing or decreasing); however, the strongest effect was observed when using buffers with low pH. This fraction had the highest number of affected reactivities; most of them were increased and most of the new ones were toward common pathogens. CONCLUSIONS: Thus, it was shown that all investigated treatments can alter to some degree the antigen-binding of secretory IgA, but acidic pH has the most potentially beneficial effect by increasing binding to a largest number of common pathogens' antigens.


Assuntos
Heme , Imunoglobulina A Secretora , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina A Secretora/farmacologia , Íons
11.
Front Immunol ; 12: 715072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539644

RESUMO

Background: Prediction of the severity of COVID-19 at its onset is important for providing adequate and timely management to reduce mortality. Objective: To study the prognostic value of damage parameters and cytokines as predictors of severity of COVID-19 using an extensive immunologic profiling and unbiased artificial intelligence methods. Methods: Sixty hospitalized COVID-19 patients (30 moderate and 30 severe) and 17 healthy controls were included in the study. The damage indicators high mobility group box 1 (HMGB1), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), extensive biochemical analyses, a panel of 47 cytokines and chemokines were analyzed at weeks 1, 2 and 7 along with clinical complaints and CT scans of the lungs. Unbiased artificial intelligence (AI) methods (logistic regression and Support Vector Machine and Random Forest algorithms) were applied to investigate the contribution of each parameter to prediction of the severity of the disease. Results: On admission, the severely ill patients had significantly higher levels of LDH, IL-6, monokine induced by gamma interferon (MIG), D-dimer, fibrinogen, glucose than the patients with moderate disease. The levels of macrophage derived cytokine (MDC) were lower in severely ill patients. Based on artificial intelligence analysis, eight parameters (creatinine, glucose, monocyte number, fibrinogen, MDC, MIG, C-reactive protein (CRP) and IL-6 have been identified that could predict with an accuracy of 83-87% whether the patient will develop severe disease. Conclusion: This study identifies the prognostic factors and provides a methodology for making prediction for COVID-19 patients based on widely accepted biomarkers that can be measured in most conventional clinical laboratories worldwide.


Assuntos
COVID-19/patologia , Diagnóstico por Computador/métodos , Índice de Gravidade de Doença , Máquina de Vetores de Suporte , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Biomarcadores/análise , Citocinas/sangue , Feminino , Proteína HMGB1/sangue , Humanos , L-Lactato Desidrogenase/sangue , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Prognóstico , Estudos Prospectivos , SARS-CoV-2
12.
Front Immunol ; 12: 601842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084159

RESUMO

Asthma is a heterogeneous inflammatory disease characterized by airflow obstruction, wheezing, eosinophilia and neutrophilia of the airways. Identification of distinct inflammatory patterns characterizing asthma endotypes led to the development of novel therapeutic approaches. Cytokine or cytokine receptor targeting by therapeutic antibodies, such as anti-IL-4 and anti-IL-5, is now approved for severe asthma treatment. However, the complexity of cytokine networks in asthma should not be underestimated. Inhibition of one pro-inflammatory cytokine may lead to perturbed expression of another pro-inflammatory cytokine. Without understanding of the underlying mechanisms and defining the molecular predictors it may be difficult to control cytokine release that accompanies certain disease manifestations. Accumulating evidence suggests that in some cases a combined pharmacological inhibition of pathogenic cytokines, such as simultaneous blockade of IL-4 and IL-13 signaling, or blockade of upstream cytokines, such as TSLP, are more effective than single cytokine targeting. IL-6 and TNF are the important inflammatory mediators in the pathogenesis of asthma. Preliminary data suggests that combined pharmacological inhibition of TNF and IL-6 during asthma may be more efficient as compared to individual neutralization of these cytokines. Here we summarize recent findings in the field of anti-cytokine therapy of asthma and discuss immunological mechanisms by which simultaneous targeting of multiple cytokines as opposed to targeting of a single cytokine may improve disease outcomes.


Assuntos
Asma , Citocinas , Mediadores da Inflamação , Pulmão , Asma/imunologia , Asma/patologia , Asma/terapia , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Pulmão/imunologia , Pulmão/patologia
13.
Front Mol Biosci ; 8: 660959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079817

RESUMO

Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.

14.
Biol Rev Camb Philos Soc ; 96(2): 376-393, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128331

RESUMO

Naked mole-rats express many unusual traits for such a small rodent. Their morphology, social behaviour, physiology, and ageing have been well studied over the past half-century. Many early findings and speculations about this subterranean species persist in the literature, although some have been repeatedly questioned or refuted. While the popularity of this species as a natural-history curiosity, and oversimplified story-telling in science journalism, might have fuelled the perpetuation of such misconceptions, an accurate understanding of their biology is especially important for this new biomedical model organism. We review 28 of these persistent myths about naked mole-rat sensory abilities, ecophysiology, social behaviour, development and ageing, and where possible we explain how these misunderstandings came about.


Assuntos
Ratos-Toupeira , Comportamento Social , Envelhecimento , Animais , Biologia
15.
FEBS Lett ; 594(21): 3542-3550, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32865225

RESUMO

Spatial organization and conformational changes of antibodies may significantly affect their biological functions. We assessed the effect of mutual organization of the two VH H domains within bispecific antibodies recognizing human TNF and the surface molecules of murine myeloid cells (F4/80 or CD11b) on TNF retention and inhibition. TNF-neutralizing properties in vitro and in vivo of MYSTI-2 and MYSTI-3 antibodies were compared with new variants with interchanged VH H domains and different linker sequences. The most effective structure of MYSTI-2 and MYSTI-3 proteins required the Ser/Gly-containing 'superflexible' linker. The orientation of the modules was crucial for the activity of the proteins, but not for MYSTI-3 with the Pro/Gln-containing 'semi-rigid' linker. Our results may contribute toward the development of more effective drug prototypes.


Assuntos
Células Mieloides/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia , Animais , Anticorpos Biespecíficos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas , Galactosamina , Humanos , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/farmacologia
16.
Ann Rheum Dis ; 79(11): 1453-1459, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796044

RESUMO

OBJECTIVES: Neutralisation of tumour necrosis factor (TNF) is widely used as a therapy for rheumatoid arthritis (RA). However, this therapy is only effective in less than a half of patients and is associated with several side effects. We hypothesised that TNF may possess non-redundant protective and immunomodulatory functions in vivo that cannot be blocked without a cost. The present work aimed to identify cellular sources of protective and pathogenic TNF, and its molecular forms during autoimmune arthritis. METHODS: Mice lacking TNF expression by distinct cell types, such as myeloid cells and T or B lymphocytes, were subjected to collagen-induced arthritis (CIA) and collagen antibody-induced arthritis. Mice lacking soluble TNF production were also employed. The severity and incidence of the disease, as well as humoral and cellular responses were assessed. RESULTS: Myeloid cell-derived TNF contributes to both induction and pathogenesis of autoimmune arthritis. Conversely, T cell-derived TNF is protective during the induction phase of arthritis via limiting of interleukin-12 production by dendritic cells and by subsequent control of autoreactive memory T cell development, but is dispensable during the effector phase of arthritis. B cell-derived TNF mediates severity of CIA via control of pathogenic autoantibody production. CONCLUSIONS: Distinct TNF-producing cell types may modulate disease development through different mechanisms, suggesting that in arthritis TNF ablation from restricted cellular sources, such as myeloid cells, while preserving protective TNF functions from other cell types may be superior to pan-anti-TNF therapy.


Assuntos
Artrite Experimental/imunologia , Células Mieloides/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
J Leukoc Biol ; 107(6): 933-939, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32040234

RESUMO

Systemic TNF neutralization can be used as a therapy for several autoimmune diseases. To evaluate the effects of cell type-restricted TNF blockade, we previously generated bispecific antibodies that can limit TNF secretion by myeloid cells (myeloid cell-specific TNF inhibitors or MYSTIs). In this study several such variable domain (VH) of a camelid heavy-chain only antibody-based TNF inhibitors were compared in relevant experimental models, both in vitro and in vivo. Pretreatment with MYSTI-2, containing the anti-F4/80 module, can restrict the release of human TNF (hTNF) from LPS-activated bone marrow-derived macrophage (BMDM) cultures of humanized TNF knock-in (mice; hTNFKI) more effectively than MYSTI-3, containing the anti-CD11b module. MYSTI-2 was also superior to MYSTI-3 in providing in vivo protection in acute toxicity model. Finally, MYSTI-2 was at least as effective as Infliximab in preventing collagen antibody-induced arthritis. This study demonstrates that a 33 kDa bispecific mini-antibody that specifically restricts TNF secretion by macrophages is efficient for amelioration of experimental arthritis.


Assuntos
Anticorpos Monoclonais/farmacologia , Artrite Experimental/terapia , Antígeno CD11b/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Cadeias Pesadas de Imunoglobulinas/farmacologia , Células Progenitoras Mieloides/efeitos dos fármacos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral/farmacologia , Animais , Antirreumáticos/farmacologia , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Expressão Gênica , Humanos , Infliximab/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Células Progenitoras Mieloides/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
18.
Environ Pollut ; 258: 113664, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31841762

RESUMO

Recently, chemical compounds containing lanthanides were used in various fields of biology and medicine. It has been described that such compounds can be applied in scanning electron microscopy (SEM) to increase the contrast and simplify the sample preparation process due to the process of replacing calcium with lanthanides in cell. However cell death by different mechanisms under influence of lanthanides seems possible. Here, we described that mummification process is a cell death physiologically realized in time: some time after lanthanide contrasting, the cell remains metabolically active and is able to biochemically transform neodymium-containing contrast, oxidize it and form large agglomerates. A distinctive feature of mummification induced by neodymium-containing contrast (NCC) is the formation of a high-rigid oxygen-containing "shield" on the surface of a neutrophil granulocyte.


Assuntos
Neodímio , Neutrófilos , Granulócitos , Elementos da Série dos Lantanídeos , Microscopia Eletrônica de Varredura
19.
Front Immunol ; 9: 2718, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534125

RESUMO

Asthma is a common inflammatory disease of the airway caused by a combination of genetic and environmental factors and characterized by airflow obstruction, wheezing, eosinophilia, and neutrophilia of lungs and sputum. Similar to other proinflammatory cytokines, IL-6 is elevated in asthma and plays an active role in this disease. However, the exact molecular mechanism of IL-6 involvement in the pathogenesis of asthma remains largely unknown and the major cellular source of pathogenic IL-6 has not been defined. In the present study, we used conditional gene targeting to demonstrate that macrophages and dendritic cells are the critical sources of pathogenic IL-6 in acute HDM-induced asthma in mice. Complete genetic inactivation of IL-6 ameliorated the disease with significant decrease in eosinophilia in the lungs. Specific ablation of IL-6 in macrophages reduced key indicators of type 2 allergic inflammation, including eosinophil and Th2 cell accumulation in the lungs, production of IgE and expression of asthma-associated inflammatory mediators. In contrast, mice with deficiency of IL-6 in dendritic cells demonstrated attenuated neutrophilic, but regular eosinophilic response in HDM-induced asthma. Taken together, our results indicate that IL-6 plays a pathogenic role in the HDM-induced asthma model and that lung macrophages and dendritic cells are the predominant sources of pathogenic IL-6 but contribute differently to the disease.


Assuntos
Asma/imunologia , Células Dendríticas/imunologia , Interleucina-6/imunologia , Macrófagos/imunologia , Animais , Asma/genética , Asma/patologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Eosinófilos/imunologia , Eosinófilos/patologia , Interleucina-6/genética , Macrófagos/patologia , Camundongos , Camundongos Knockout , Células Th2/imunologia , Células Th2/patologia
20.
Biochem Biophys Res Commun ; 499(4): 967-972, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29626483

RESUMO

Binding of native bacterial protein SlyD to metal affinity matrices remains a major problem in affinity purification of His-tagged recombinant proteins from Escherichia coli cells. In this study, four novel E. coli strains that lack the expression of SlyD/SlyX, were engineered using λ-red mediated chromosomal deletion. The resultant mutant E. coli strains allow us to obtain SlyD-free proteins immediately after metal affinity chromatography, and eliminate additional purification processes. As a model protein, bispecific antibodies composed of anti-F4/80 VHH module and anti-TNF VHH module (MYSTI-2) were used. Using this protein we have shown that the SlyD/SlyX-deficient E. coli strains allow us to obtain a fully functional protein.


Assuntos
Escherichia coli/metabolismo , Peptidilprolil Isomerase/deficiência , Proteínas Recombinantes/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Citometria de Fluxo , Humanos , Peptidilprolil Isomerase/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA