Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 7: 1505, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708638

RESUMO

Antifungal activity of rhamnolipids (RLs) has been widely studied against many plant pathogenic fungi, but not against Fusarium verticillioides, a major pathogen of maize (Zea mays L.). F. verticillioides causes stalk and ear rot of maize or asymptomatically colonizes the plant and ears resulting in moderate to heavy crop loss throughout the world. F. verticillioides produces fumonisin mycotoxins, reported carcinogens, which makes the contaminated ears unsuitable for consumption. In this study, the RL produced using glucose as sole carbon source was characterized by FTIR and LCMS analyses and its antifungal activity against F. verticillioides was evaluated in vitro on maize stalks and seeds. Further, the effect of RL on the mycelia of F. verticillioides was investigated by scanning electron microscopy which revealed visible damage to the mycelial structure as compared to control samples. In planta, treatment of maize seeds with a RL concentration of 50 mg l-1 resulted in improved biomass and fruiting compared to those of healthy control plants and complete suppression of characteristic disease symptoms and colonization of maize by F. verticillioides. The study highlights the potential of RLs to be used for an effective biocontrol strategy against colonization of maize plant by F. verticillioides.

2.
J Basic Microbiol ; 55(11): 1265-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26173581

RESUMO

The rhamnolipid biosurfactant (RL-DS9) extracted from the bacterial strain Pseudomonas aeruginosa DS9 was evaluated for its antifungal activity against Colletotrichum falcatum that causes red rot in sugarcane. The surface tension (ST) reduction, biosurfactant production, and antifungal activity of biosurfactant against C. falcatum were investigated by using the medium with different carbon sources and it was found to be maximum in glucose. Moreover, highest reduction of ST and production of biosurfactant was achieved at 4.5% (w/v) concentration of glucose. The efficacy of RL-DS9 was compared with a commercially available rhamnolipid (RL-R95) using microtitre plate assay. Results showed that at 100 µg ml(-1) concentration RL-DS9 exhibited 86.6% inhibition against C. falcatum spore germination, and in the same concentration RL-R95 showed 83.3% inhibition. From liquid chromatography-mass spectrometry (LC-MS) analysis, it was revealed that only two similar congeners Rha-(C10 ) and Rha-Rha-(C10:1 ) were found to be in common among both the rhamnolipids. In the plant bioassay test, it was noted that red rot incidence was reduced on the sugarcane plants treated with RL-DS9. This is the first report that rhamnolipid biosurfactant produced by Pseudomonas aeruginosa DS9 could be able to control red rot disease of sugarcane caused due to the infection with the fungus Colletotrichum falcatum.


Assuntos
Antifúngicos , Colletotrichum/efeitos dos fármacos , Glicolipídeos , Pseudomonas aeruginosa/metabolismo , Antifúngicos/farmacologia , Bioensaio , Glicolipídeos/biossíntese , Glicolipídeos/farmacologia , Saccharum/microbiologia
3.
J Basic Microbiol ; 54(6): 548-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23687052

RESUMO

Pokkah boeng disease on sugarcane caused by the fungus Fusarium sacchari results considerable damage to the crop leading to top rot, the most serious and advanced stage of pokkah boeng, where the growing point is killed and the entire top of the plant dies. In the present study, the effect of rhamnolipid biosurfactant as an antifungal agent against F. sacchari to control pokkah boeng disease was investigated. On the basis of surface tension reduction, 12 bacterial isolates were selected as potent biosurfactant producers and eight of them showed antagonistic effect against F. sacchari. Among the eight, the isolate DS9 was found as the effective inhibitor of the fungus in vitro which was further evaluated using its biosurfactant present in whole culture, cell-free culture supernatant and crude biosurfactant at various concentrations. Reductions of fungal growths were found more with crude biosurfactant. By sequencing 16S rRNA, DS9 was identified as P. aeruginosa and the produced biosurfactant was characterized as rhamnolipid by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. The rhamnolipid biosurfactant inhibits phytopathogenic fungi F. sacchari and therefore seems to be a good biocontrol agent to control pokkah boeng disease of sugarcane.


Assuntos
Antibiose , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Glicolipídeos/farmacologia , Pseudomonas aeruginosa/isolamento & purificação , Tensoativos/farmacologia , Cromatografia Líquida , DNA Ribossômico/química , DNA Ribossômico/genética , Espectrometria de Massas , Doenças das Plantas/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia , RNA Ribossômico 16S/genética , Saccharum/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA