Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 12(527)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969483

RESUMO

Chemical warfare nerve agents are organophosphorus chemical compounds that induce cholinergic crisis, leaving little or no time for medical intervention to prevent death. The current chemical treatment regimen may prevent death but does not prevent postexposure complications such as brain damage and permanent behavioral abnormalities. In the present study, we have demonstrated an adeno-associated virus 8 (AAV8)-mediated paraoxonase 1 variant IF-11 (PON1-IF11) gene therapy that offers asymptomatic prophylactic protection to mice against multiple lethal doses of G-type chemical warfare nerve agents, namely, tabun, sarin, cyclosarin, and soman, for up to 5 months in mice. A single injection of liver-specific adeno-associated viral particles loaded with PON1-IF11 gene resulted in expression and secretion of recombinant PON1-IF11 in milligram quantities, which has the catalytic power to break down G-type chemical warfare nerve agents into biologically inactive products in vitro and in vivo in rodents. Mice containing milligram concentrations of recombinant PON1-IF11 in their blood displayed no clinical signs of toxicity, as judged by their hematological parameters and serum chemistry profiles. Our study unfolds avenues to develop a one-time application of gene therapy to express a near-natural and circulating therapeutic PON1-IF11 protein that can potentially protect humans against G-type chemical warfare nerve agents for several weeks to months.


Assuntos
Arildialquilfosfatase/metabolismo , Terapia Genética/métodos , Animais , Arildialquilfosfatase/genética , Humanos , Camundongos , Agentes Neurotóxicos/efeitos adversos
2.
Proc Natl Acad Sci U S A ; 116(45): 22609-22618, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31591209

RESUMO

A minority of cancers have breast cancer gene (BRCA) mutations that confer sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis), but the role for PARPis in BRCA-proficient cancers is not well established. This suggests the need for novel combination therapies to expand the use of these drugs. Recent reports that low doses of DNA methyltransferase inhibitors (DNMTis) plus PARPis enhance PARPi efficacy in BRCA-proficient AML subtypes, breast, and ovarian cancer open up the possibility that this strategy may apply to other sporadic cancers. We identify a key mechanistic aspect of this combination therapy in nonsmall cell lung cancer (NSCLC): that the DNMTi component creates a BRCAness phenotype through downregulating expression of key homologous recombination and nonhomologous end-joining (NHEJ) genes. Importantly, from a translational perspective, the above changes in DNA repair processes allow our combinatorial PARPi and DNMTi therapy to robustly sensitize NSCLC cells to ionizing radiation in vitro and in vivo. Our combinatorial approach introduces a biomarker strategy and a potential therapy paradigm for treating BRCA-proficient cancers like NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Metilases de Modificação do DNA/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Animais , Antineoplásicos , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Metilases de Modificação do DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Quimioterapia Combinada , Feminino , Recombinação Homóloga/efeitos dos fármacos , Recombinação Homóloga/efeitos da radiação , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Ftalazinas/administração & dosagem , Radiação Ionizante
3.
Front Oncol ; 9: 297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069169

RESUMO

The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options-chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases-neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called "living drug," provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA