Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(11): e111901, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917141

RESUMO

Changes in mitochondrial morphology are associated with nutrient utilization, but the precise causalities and the underlying mechanisms remain unknown. Here, using cellular models representing a wide variety of mitochondrial shapes, we show a strong linear correlation between mitochondrial fragmentation and increased fatty acid oxidation (FAO) rates. Forced mitochondrial elongation following MFN2 over-expression or DRP1 depletion diminishes FAO, while forced fragmentation upon knockdown or knockout of MFN2 augments FAO as evident from respirometry and metabolic tracing. Remarkably, the genetic induction of fragmentation phenocopies distinct cell type-specific biological functions of enhanced FAO. These include stimulation of gluconeogenesis in hepatocytes, induction of insulin secretion in islet ß-cells exposed to fatty acids, and survival of FAO-dependent lymphoma subtypes. We find that fragmentation increases long-chain but not short-chain FAO, identifying carnitine O-palmitoyltransferase 1 (CPT1) as the downstream effector of mitochondrial morphology in regulation of FAO. Mechanistically, we determined that fragmentation reduces malonyl-CoA inhibition of CPT1, while elongation increases CPT1 sensitivity to malonyl-CoA inhibition. Overall, these findings underscore a physiologic role for fragmentation as a mechanism whereby cellular fuel preference and FAO capacity are determined.


Assuntos
Ácidos Graxos , Malonil Coenzima A , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Oxirredução , Mitocôndrias/metabolismo
2.
Am J Physiol Cell Physiol ; 322(5): C927-C938, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35353635

RESUMO

Mechanical forces are critical physical cues that can affect numerous cellular processes regulating the development, tissue maintenance, and functionality of cells. The contribution of mechanical forces is especially crucial in the vascular system where it is required for embryogenesis and for maintenance of physiological function in vascular cells including aortic endothelial cells, resident macrophages, and smooth muscle cells. Emerging evidence has also identified a role of these mechanical cues in pathological conditions of the vascular system such as atherosclerosis and associated diseases like hypertension. Of the different mechanotransducers, mechanosensitive ion channels/receptors are gaining prominence due to their involvement in numerous physiological and pathological conditions. However, only a handful of potential mechanosensory ion channels/receptors have been shown to be involved in atherosclerosis, and their precise role in disease development and progression remains poorly understood. Here, we provide a comprehensive account of recent studies investigating the role of mechanosensitive ion channels/receptors in atherosclerosis. We discuss the different groups of mechanosensitive proteins and their specific roles in inflammation, endothelial dysfunction, macrophage foam cell formation, and lesion development, which are crucial for the development and progression of atherosclerosis. Results of the studies discussed here will help in developing an understanding of the current state of mechanobiology in vascular diseases, specifically in atherosclerosis, which may be important for the development of innovative and targeted therapeutics for this disease.


Assuntos
Aterosclerose , Mecanotransdução Celular , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Humanos , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Miócitos de Músculo Liso/metabolismo
3.
Sci Signal ; 14(707): eabd4077, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726952

RESUMO

Implantation of biomaterials or devices into soft tissue often leads to the development of the foreign body response (FBR), an inflammatory condition that can cause implant failure, tissue injury, and death of the patient. Macrophages accumulate and fuse to generate destructive foreign body giant cells (FBGCs) at the tissue-implant interface, leading to the development of fibrous scar tissue around the implant that is generated by myofibroblasts. We previously showed that the FBR in vivo and FBGC formation in vitro require transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel. Here, we report that TRPV4 was required specifically for the FBR induced by implant stiffness independently of biochemical cues and for intracellular stiffening that promotes FBGC formation in vitro. TRPV4 deficiency reduced collagen deposition and the accumulation of macrophages, FBGCs, and myofibroblasts at stiff, but not soft, implants in vivo and inhibited macrophage-induced differentiation of wild-type fibroblasts into myofibroblasts in vitro. Atomic force microscopy demonstrated that TRPV4 was required for implant-adjacent tissue stiffening in vivo and for cytoskeletal remodeling and intracellular stiffening induced by fusogenic cytokines in vitro. Together, these data suggest a mechanism whereby a reciprocal functional interaction between TRPV4 and substrate stiffness leads to cytoskeletal remodeling and cellular force generation to promote FBGC formation during the FBR.


Assuntos
Corpos Estranhos , Canais de Cátion TRPV , Células Gigantes , Humanos , Canais de Cátion TRPV/genética
4.
Sci Rep ; 11(1): 8173, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854174

RESUMO

Atherosclerosis, a chronic inflammatory disease of large arteries, is the major contributor to the growing burden of cardiovascular disease-related mortality and morbidity. During early atherogenesis, as a result of inflammation and endothelial dysfunction, monocytes transmigrate into the aortic intimal areas, and differentiate into lipid-laden foam cells, a critical process in atherosclerosis. Numerous natural compounds such as flavonoids and polyphenols are known to have anti-inflammatory and anti-atherogenic properties. Herein, using a fluorometric imaging plate reader-supported Ca2+ influx assay, we report semi high-throughput screening-based identification of ginkgetin, a biflavone, as a novel inhibitor of transient receptor potential vanilloid 4 (TRPV4)-dependent proatherogenic and inflammatory processes in macrophages. We found that ginkgetin (1) blocks TRPV4-elicited Ca2+ influx into macrophages, (2) inhibits oxidized low-density lipoprotein (oxLDL)-induced foam cell formation by suppressing the uptake but not the binding of oxLDL in macrophages, and (3) attenuates oxLDL-induced phosphorylation of JNK2, expression of TRPV4 proteins, and induction of inflammatory mRNAs. Considered all together, the results of this study show that ginkgetin inhibits proatherogenic/inflammatory macrophage function in a TRPV4-dependent manner, thus strengthening the rationale for the use of natural compounds for developing therapeutic and/or chemopreventive molecules.


Assuntos
Aterosclerose/metabolismo , Biflavonoides/farmacologia , Cálcio/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Aterosclerose/tratamento farmacológico , Linhagem Celular , Células Espumosas/citologia , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Ensaios de Triagem em Larga Escala , Lipoproteínas LDL/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células RAW 264.7 , Canais de Cátion TRPV/genética
5.
J Biol Chem ; 296: 100129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33262217

RESUMO

Multinucleated giant cells are formed by the fusion of macrophages and are a characteristic feature in numerous pathophysiological conditions including the foreign body response (FBR). Foreign body giant cells (FBGCs) are inflammatory and destructive multinucleated macrophages and may cause damage and/or rejection of implants. However, while these features of FBGCs are well established, the molecular mechanisms underlying their formation remain elusive. Improved understanding of the molecular mechanisms underlying the formation of FBGCs may permit the development of novel implants that eliminate or reduce the FBR. Our previous study showed that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive ion channel/receptor, is required for FBGC formation and FBR to biomaterials. Here, we have determined that (a) TRPV4 is directly involved in fusogenic cytokine (interleukin-4 plus granulocyte macrophage-colony stimulating factor)-induced activation of Rac1, in bone marrow-derived macrophages; (b) TRPV4 directly interacts with Rac1, and their interaction is further augmented in the presence of fusogenic cytokines; (c) TRPV4-dependent activation of Rac1 is essential for the augmentation of intracellular stiffness and regulation of cytoskeletal remodeling; and (d) TRPV4-Rac1 signaling axis is critical in fusogenic cytokine-induced FBGC formation. Together, these data suggest a novel mechanism whereby a functional interaction between TRPV4 and Rac1 leads to cytoskeletal remodeling and intracellular stiffness generation to modulate FBGC formation.


Assuntos
Células Gigantes de Corpo Estranho/metabolismo , Células Gigantes/metabolismo , Macrófagos/metabolismo , Neuropeptídeos/metabolismo , Canais de Cátion TRPV/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Fusão Celular , Células Cultivadas , Modelos Animais de Doenças , Células Gigantes/patologia , Células Gigantes de Corpo Estranho/patologia , Macrófagos/patologia , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Transdução de Sinais , Canais de Cátion TRPV/genética , Proteínas rac1 de Ligação ao GTP/genética
6.
Front Immunol ; 11: 570195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381111

RESUMO

Phenotypic polarization of macrophages is deemed essential in innate immunity and various pathophysiological conditions. We have now determined key aspects of the molecular mechanism by which mechanical cues regulate macrophage polarization. We show that Transient Receptor Potential Vanilloid 4 (TRPV4), a mechanosensitive ion channel, mediates substrate stiffness-induced macrophage polarization. Using atomic force microscopy, we showed that genetic ablation of TRPV4 function abrogated fibrosis-induced matrix stiffness generation in skin tissues. We have determined that stiffer skin tissue promotes the M1 macrophage subtype in a TRPV4-dependent manner; soft tissue does not. These findings were further validated by our in vitro results which showed that stiff matrix (50 kPa) alone increased expression of macrophage M1 markers in a TRPV4-dependent manner, and this response was further augmented by the addition of soluble factors; neither of which occurred with soft matrix (1 kPa). A direct requirement for TRPV4 in M1 macrophage polarization spectrum in response to increased stiffness was evident from results of gain-of-function assays, where reintroduction of TRPV4 significantly upregulated the expression of M1 markers in TRPV4 KO macrophages. Together, these data provide new insights regarding the role of TRPV4 in matrix stiffness-induced macrophage polarization spectrum that may be explored in tissue engineering and regenerative medicine and targeted therapeutics.


Assuntos
Matriz Extracelular/metabolismo , Macrófagos/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Imunidade Inata , Ativação de Macrófagos , Masculino , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Força Atômica , Canais de Cátion TRPV/genética
7.
Lab Invest ; 100(2): 265-273, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31417159

RESUMO

Allergic asthma is one of the most common immune-mediated disorders affecting the lungs. It is characterized clinically by airway hyperresponsiveness, eosinophilia, enhanced IL-4 and IL-13, peribronchial inflammation with mononuclear cell infiltration, and goblet cell hyperplasia associated with increased mucus production. However, chronic asthma with repeated exposures to inhaled allergens can result in subepithelial pulmonary fibrosis. The transient receptor potential cation channel subfamily V member 4 (TRPV4) protein can promote the generation of myofibroblasts and pulmonary fibrosis. Here, we investigated the possibility that TPRV4 facilitates the development of allergic asthma and subsequent pulmonary fibrosis in the lung. To test this, wild-type (WT) and TPRV4 gene knockout (KO) mice were repeatedly sensitized with chicken ovalbumin (OVA) and repeatedly subjected to aerosol challenge with 1% OVA. We found that there were no significant differences in the development of allergic asthma between the WT and TPRV4 KO mice. Both groups of mice exhibited similar levels of airway hyperresponsiveness, IL-13, IL-5, OVA-specific IgE, eosinophilia, mucus-secreting goblet cell hyperplasia, and deposition of collagen fiber, which is a hallmark of the pulmonary fibrosis. Thus, these data suggest that TPRV4 protein is dispensable in the initiation and development of airway asthma and subsequent fibrosis.


Assuntos
Asma/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Fibrose Pulmonar/metabolismo , Canais de Cátion TRPV , Animais , Asma/patologia , Hiper-Reatividade Brônquica/patologia , Feminino , Humanos , Pulmão/química , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibrose Pulmonar/patologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
8.
Lab Invest ; 100(2): 178-185, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31645630

RESUMO

Transient receptor ion channels have emerged as immensely important channels/receptors in diverse physiological and pathological responses. Of particular interest is the transient receptor potential channel subfamily V member 4 (TRPV4), which is a polymodal, nonselective, calcium-permeant cation channel, and is activated by both endogenous and exogenous stimuli. Both neuronal and nonneuronal cells express functional TRPV4, which is responsive to a variety of biochemical and biomechanical stimuli. Emerging discoveries have advanced our understanding of the role of macrophage TRPV4 in numerous inflammatory diseases. In lung injury, TRPV4 mediates macrophage phagocytosis, secretion of pro-resolution cytokines, and generation of reactive oxygen species. TRPV4 regulates lipid-laden macrophage foam cell formation, the hallmark of atheroinflammatory conditions, in response to matrix stiffness and lipopolysaccharide stimulation. Accumulating data also point to a role of macrophage TRPV4 in the pathogenesis of the foreign body response, a chronic inflammatory condition, through the formation of foreign body giant cells. Deletion of TRPV4 in macrophages suppresses the allergic and nonallergic itch in a mouse model, suggesting a role of TRPV4 in skin disease. Here, we discuss the current understanding of the role of macrophage TRPV4 in various inflammatory conditions.


Assuntos
Inflamação , Macrófagos , Canais de Cátion TRPV , Animais , Aterosclerose , Fibrose , Humanos , Pneumopatias , Macrófagos/imunologia , Macrófagos/fisiologia , Camundongos , Prurido
9.
Cell Mol Bioeng ; 12(2): 139-152, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31681446

RESUMO

INTRODUCTION: The implantation of biomaterials into soft tissue leads to the development of foreign body response, a non-specific inflammatory condition that is characterized by the presence of fibrotic tissue. Epithelial-mesenchymal transition (EMT) is a key event in development, fibrosis, and oncogenesis. Emerging data support a role for both a mechanical signal and a biochemical signal in EMT. We hypothesized that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is a mediator of EMT. METHODS: Normal human primary epidermal keratinocytes (NHEKs) were seeded on collagen-coated plastic plates or varied stiffness polyacrylamide gels in the presence or absence of TGFß1, Immunofluorescence, immunoblot, and polymerase chain reaction analysis were performed to determine expression level of EMT markers and signaling proteins. Knock-down of TRPV4 function was achieved by siRNA transfection or by GSK2193874 treatment. RESULTS: We found that knock-down of TRPV4 blocked both matrix stiffness- and TGFß1-induced EMT in NHEKs. In a murine skin fibrosis model, TRPV4 deletion resulted in decreased expression of the mesenchymal marker, α-SMA, and increased expression of epithelial marker, E-cadherin. Mechanistically, our data showed that: i) TRPV4 was essential for the nuclear translocation of TAZ in response to matrix stiffness and TGFß1; ii) Antagonism of TRPV4 inhibited both matrix stiffness-induced and TGFß1-induced expression of TAZ proteins; and iii) TRPV4 antagonism suppressed both matrix stiffness-induced and TGFß1-induced activation of Smad2/3, but not of AKT. CONCLUSIONS: These data identify a novel role for TRPV4-TAZ mechanotransduction signaling axis in regulating EMT in NHEKs in response to both matrix stiffness and TGFß1.

10.
Am J Pathol ; 189(8): 1505-1512, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121133

RESUMO

The presence of biomaterials and devices implanted into soft tissue is associated with development of a foreign body response (FBR), a chronic inflammatory condition that can ultimately lead to implant failure, which may cause harm to or death of the patient. Development of FBR includes activation of macrophages at the tissue-implant interface, generation of destructive foreign body giant cells (FBGCs), and generation of fibrous tissue that encapsulates the implant. However, the mechanisms underlying the FBR remain poorly understood, as neither the materials composing the implants nor their chemical properties can explain triggering of the FBR. Herein, we report that genetic ablation of transient receptor potential vanilloid 4 (TRPV4), a Ca2+-permeable mechanosensitive cation channel in the transient receptor potential vanilloid family, protects TRPV4 knockout mice from FBR-related events. The mice showed diminished collagen deposition along with reduced macrophage accumulation and FBGC formation compared with wild-type mice in a s.c. implantation model. Analysis of macrophage markers in spleen tissues and peritoneal cavity showed that the TRPV4 deficiency did not impair basal macrophage maturation. Furthermore, genetic deficiency or pharmacologic antagonism of TRPV4 blocked cytokine-induced FBGC formation, which was restored by lentivirus-mediated TRPV4 reintroduction. Taken together, these results suggest an important, previously unknown, role for TRPV4 in FBR.


Assuntos
Sinalização do Cálcio , Reação a Corpo Estranho/metabolismo , Células Gigantes de Corpo Estranho/metabolismo , Macrófagos Peritoneais/metabolismo , Mecanotransdução Celular , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Reação a Corpo Estranho/genética , Reação a Corpo Estranho/patologia , Células Gigantes de Corpo Estranho/patologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Knockout , Canais de Cátion TRPV/genética
11.
Physiol Rep ; 7(7): e14069, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30980509

RESUMO

Porphyromonas gingivalis (P.g), a major causative agent of periodontitis, has been linked to atherosclerosis, a chronic inflammatory vascular disease. Recent studies have suggested a link between periodontitis and arterial stiffness, a risk factor for atherosclerosis. However, the mechanisms by which P.g infection contributes to atherogenesis remain elusive. The formation of lipid-laden macrophage "foam cells" is critically important to development and progression of atherosclerosis. We have obtained evidence that TRPV4 (transient receptor potential channel of the vanilloid subfamily 4), a mechanosensitive channel, is a regulator of macrophage foam cell formation both in response to P.g-derived lipopolysaccharide (PgLPS) or to an increase in matrix stiffness. Importantly, we found that TRPV4 activity (Ca2+ influx) was increased in response to PgLPS. Genetic deletion or chemical antagonism of TRPV4 channels blocked PgLPS-triggered exacerbation of oxidized LDL (oxLDL)-mediated foam cell formation. Mechanistically, we found that (1) TRPV4 regulated oxLDL uptake but not its cell surface binding in macrophages; (2) reduced foam cell formation in TRPV4 null cells was independent of expression of CD36, a predominant receptor for oxLDL, and (3) co-localization of TRPV4 and CD36 on the macrophage plasma membrane was sensitive to the increased level of matrix stiffness occurring in the presence of PgLPS. Altogether, our results suggest that TRPV4 channels play an essential role in P.g-induced exacerbation of macrophage foam cell generation through a mechanism that modulates uptake of oxLDL.


Assuntos
Cálcio/metabolismo , Células Espumosas/metabolismo , Lipopolissacarídeos/farmacologia , Canais de Cátion TRPV/metabolismo , Animais , Antígenos CD36/metabolismo , Células Cultivadas , Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Porphyromonas gingivalis , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
12.
J Cell Mol Med ; 23(2): 761-774, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30450767

RESUMO

Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor ß1 (TGFß1), in epithelial-mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFß1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFß1-induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E-cadherin, N-cadherin (NCAD) and α-smooth muscle actin (α-SMA), and (b) TRPV4 deficiency prevented matrix stiffness-induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α-SMA, in a bleomycin-induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes-associated protein/transcriptional coactivator with PDZ-binding motif) in response to matrix stiffness and TGFß1, (b) TRPV4 deletion inhibited both matrix stiffness- and TGFß1-induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness- and TGFß1-induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Epiderme/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Canais de Cátion TRPV/genética , Transativadores/genética , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Bleomicina/administração & dosagem , Caderinas/genética , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/patologia , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Fibrose/induzido quimicamente , Regulação da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Mecanotransdução Celular , Camundongos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/deficiência , Transativadores/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Sinalização YAP
13.
BMC Med Genet ; 18(1): 109, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28982350

RESUMO

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is an etiologically complex childhood onset neurobehavioral disorder characterized by age-inappropriate inattention, hyperactivity, and impulsivity. Symptom severity varies widely and boys are diagnosed more frequently than girls. ADHD probands were reported to have abnormal transmissions of dopamine, serotonin, and/or noradrenaline. Monoamine oxidase A (MAOA) and B (MAOB), mitochondrial outer membrane bound two isoenzymes, mediate degradation of these neurotransmitters and thus regulating their circulating levels. Case-control analyses in different populations, including Indians, suggested involvement of MAOA and MAOB genes in the etiology of ADHD. Due to high heritability rate of ADHD, we tested familial transmission of MAOA and MAOB variants to ADHD probands in 190 nuclear families having ADHD probands from Indo-Caucasoid ethnicity. METHODS: Subjects were recruited following the Diagnostic and Statistical Manual of Mental Disorders-4th edition (DSM-IV). Appropriate scales were used for measuring the behavioral traits in probands. Genotyping was performed through PCR-based amplification of target sites followed by DNA-sequencing and/or gel-electrophoresis. Data obtained were analyzed by family based statistical methods. RESULTS: Out of 58 variants present in the analyzed sites only 15 were found to be polymorphic (30 bp-uVNTR, rs5906883, rs1465107, rs1465108, rs5905809, rs5906957, rs6323, rs1137070 from MAOA and rs4824562, rs56220155, rs2283728, rs2283727, rs3027441, rs6324, rs3027440 from MAOB). Statistically significant maternal transmission of alleles to male probands was observed for MAOA rs5905809 'G' (p = 0.04), rs5906957 'A' (p = 0.04), rs6323 'G' (p = 0.0001) and MAOB rs56220155 'A' (p = 0.002), rs2283728 'C' (p = 0.0008), rs2283727 'C' (p = 0.0008), rs3027441 'T' (p = 0.003), rs6324 'C' (p = 0.003), rs3027440 'T' (p = 0.0002). Significantly preferential maternal transmissions of different haplotype combinations to male probands were also noticed (p < 0.05), while female probands did not reveal such transmission bias. Behavioral traits of male probands exhibited significant association with gene variants. Age of the mother at pregnancy also revealed association with risk variants of male probands. CONCLUSIONS: It may be inferred that the MAOA and MAOB variants may contribute to the etiology of ADHD in the Indo-Caucasoid population and could be responsible for higher occurrence of ADHD in the boys.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Predisposição Genética para Doença , Monoaminoxidase/genética , Comportamento Problema/psicologia , Alelos , Manual Diagnóstico e Estatístico de Transtornos Mentais , Feminino , Técnicas de Genotipagem , Haplótipos , Humanos , Masculino , Projetos Piloto , População Branca/genética
14.
Free Radic Biol Med ; 110: 142-150, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28602913

RESUMO

Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis.


Assuntos
Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Canais de Cátion TRPV/genética , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Transporte Biológico , Fenômenos Biomecânicos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Expressão Gênica , Macrófagos/metabolismo , Macrófagos/patologia , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Cultura Primária de Células , Células RAW 264.7 , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
15.
Am J Physiol Cell Physiol ; 312(5): C562-C572, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249987

RESUMO

Scleroderma is a multisystem fibroproliferative disease with no effective medical treatment. Myofibroblasts are critical to the fibrogenic tissue repair process in the skin and many internal organs. Emerging data support a role for both matrix stiffness, and transforming growth factor ß1 (TGFß1), in myofibroblast differentiation. Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel activated by both mechanical and biochemical stimuli. The objective of this study was to determine the role of TRPV4 in TGFß1- and matrix stiffness-induced differentiation of dermal fibroblasts. We found that TRPV4 channels are expressed and functional in both human (HDF) and mouse (MDF) dermal fibroblasts. TRPV4 activity (agonist-induced Ca2+ influx) was induced by both matrix stiffness and TGFß1 in dermal fibroblasts. TGFß1 induced expression of TRPV4 proteins in a dose-dependent manner. Genetic ablation or pharmacological antagonism of TRPV4 channel abrogated Ca2+ influx and both TGFß1-induced and matrix stiffness-induced myofibroblast differentiation as assessed by 1) α-smooth muscle actin expression/incorporation into stress fibers, 2) generation of polymerized actin, and 3) expression of collagen-1. We found that TRPV4 inhibition abrogated TGFß1-induced activation of AKT but not of Smad2/3, suggesting that the mechanism by which profibrotic TGFß1 signaling in dermal fibroblasts is modified by TRPV4 may be through non-Smad pathways. Altogether, these data identify a novel reciprocal functional link between TRPV4 activation and TGFß1 signals regulating dermal myofibroblast differentiation. These findings suggest that therapeutic inhibition of TRPV4 activity may provide a targeted approach to the treatment of scleroderma.


Assuntos
Matriz Extracelular/fisiologia , Mecanotransdução Celular/fisiologia , Miofibroblastos/citologia , Miofibroblastos/fisiologia , Canais de Cátion TRPV/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Módulo de Elasticidade/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/citologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA