Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2004, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132114

RESUMO

A wide variety of electrocatalysts has been evolved for hydrogen evolution reaction (HER) and it is reasonable to carry out HER with low cost electrocatalyst and a good efficiency. In this study, Cu3N was synthesized by nitridation of Cu2O and further utilized as an electrocatalyst towards HER. The developed Cu3N electrocatalyst was tested and results showed a low overpotential and moderate Tafel slope value (overpotential: 149.18 mV and Tafel slope 63.28 mV/dec at 10 mA/cm2) in alkaline medium with a charge transfer resistance value as calculated from electrochemical impendence spectroscopy being 1.44 Ω. Further from the experimental results, it was observed that the reaction kinetics was governed by Volmer-Heyrovsky mechanism. Moreover, Cu3N has shown an improved rate of electron transfer and enhanced accessible active sites, due to its structural properties and electrical conductivity. Thus the overall results show an excellent electrochemical performance, leading to a new pathway for the synthesis of low cost electrocatalyst for energy conversion and storage.

3.
Environ Res ; 200: 111719, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34293309

RESUMO

The development of active electrocatalysts and photocatalysts for hydrogen evolution reaction (HER) and for environmental remediation is a huge challenge. Research is still underway on the development of low-cost catalytic materials with appreciable efficiency for HER. In the present study, a composite of metal organic framework (MOF) with CdS and graphene (NH2-MIL-125(Ti)/CdS-graphene) composites were developed with different loadings of graphene material via solvothermal technique. Further the electrocatalytic activity of the synthesized catalysts were investigated for HER and photocatalytic degradation of dye. Results show that the synthesized catalyst with a less amount of graphene was more active. HER results showed a less Tafel slope of 70.8 and 61.9 mVdec-1 with 15.6 mA/cm2 and 15.46 mA/cm2 current densities under light on and off conditions. Further the dye degradation activity of the synthesized catalysts was tested with Rhodamine B dye and results showed that the catalyst showed excellent activity for low weight loading of graphene with a degradation efficiency of 95 % and followed pseudo first order kinetic model. Overall results showed that the synthesized composites are promising for HER and photocatalytic applications.


Assuntos
Grafite , Titânio , Catálise , Luz
4.
ACS Omega ; 5(37): 23919-23930, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984712

RESUMO

A recent class of porous materials, viz., metal-organic frameworks (MOFs), finds applications in several areas. In this work, Cu-based MOFs (Cu-benzene-1,3,5-tricarboxylic acid) along with graphene oxide, viz., Cu-MOF/GO, are synthesized and used further for reducing CO2 electrochemically. The reduction was accomplished in various supporting electrolytes, viz., KHCO3/H2O, tetrabutylammonium bromide (TBAB)/dimethylformamide (DMF), KBr/CH3OH, CH3COOK/CH3OH, TBAB/CH3OH, and tetrabutylammonium perchlorate (TBAP)/CH3OH to know their effect on product formation. The electrode fabricated with the synthesized material was used for testing the electroreduction of CO2 at various polarization potentials. The electrochemical reduction of CO2 is carried out via the polarization technique within the experimented potential regime vs saturated calomel electrode (SCE). Ion chromatography was employed for the analysis of the produced products in the electrolyte, and the results showed that HCOOH was the main product formed through reduction. The highest concentrations of HCOOH formed for different electrolytes are 0.1404 mM (-0.1 V), 66.57 mM (-0.6 V), 0.2690 mM (-0.5 V), 0.2390 mM (-0.5 V), 0.7784 mM (-0.4 V), and 0.3050 mM (-0.45 V) in various supporting electrolyte systems, viz., KHCO3/H2O, TBAB/DMF, KBr/CH3OH, CH3COOK/CH3OH, TBAB/CH3OH, and TBAP/CH3OH, respectively. The developed catalyst accomplished a significant efficiency in the conversion and reduction of CO2. A high faradic efficiency of 58% was obtained with 0.1 M TBAB/DMF electrolyte, whereas for Cu-MOF alone, the efficiency was 38%. Thus, the work is carried out using a cost-effective catalyst for the conversion of CO2 to formic acid than using the commercial electrodes. The synergistic effect of GO sheets at 3 wt % concentration and Cu+OH- interaction leads to the formation of formic acid in various electrolytes.

5.
ACS Omega ; 5(30): 18941-18949, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775895

RESUMO

The present study reports the synthesis of a porous Fe-based MOF named MIL-100(Fe) by a modified hydrothermal method without the HF process. The synthesis gave a high surface area with the specific surface area calculated to be 2551 m2 g-1 and a pore volume of 1.407 cm3 g-1 with an average pore size of 1.103 nm. The synthesized electrocatalyst having a high surface area is demonstrated as an excellent electrocatalyst for the hydrogen evolution reaction investigated in both acidic and alkaline media. As desired, the electrochemical results showed low Tafel slopes (53.59 and 56.65 mV dec-1), high exchange current densities (76.44 and 72.75 mA cm-2), low overpotentials (148.29 and 150.57 mV), and long-term stability in both media, respectively. The high activity is ascribed to the large surface area of the synthesized Fe-based metal-organic framework with porous nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA