RESUMO
Open source in-situ environmental sensor hardware continues to expand across the globe for a variety of applications. Sensor-management systems typically perform three fundamental tasks: sample sensors at a specified time or period, save data onto retrievable media, and switch power to components on and off in between sample cycles to conserve battery energy and increase field operation time. These tasks are commonly accomplished through integrating separate off-the-shelf components into the desired system such as: power relays, SD card hardware, Real-Time Clocks (RTCs), and coin cell batteries. To enable faster prototyping, the Openly Published Environmental Sensing Lab abstracted all of these requirements into a single printed circuit board (PCB), Hypnos, that can be included in any project to achieve these commonly-required capabilities: powering on and off connected sensors on a schedule and logging collected data to the removable SD card. The hardware is laid out in a "Feather" form factor, a popular configuration in the open-source hardware community, to easily mate with other industry standard products. The onboard RTC acts as an alarm clock that wakes a user-attached microprocessor from low-power sleep modes in between sample cycles. By integrating all these components into a single PCB, we save cost while significantly reducing physical system size. The design as well as a suite of code functions that enable the user to configure all the Hypnos board features are detailed.
RESUMO
Increasing agricultural demand for freshwater in the face of a changing climate requires improved irrigation management to maximize resource efficiency. Soil water deficits can significantly reduce plant growth and development, directly impacting crop quantity and quality. Dendrometers are a plant-based tool that have shown potential to improve irrigation management in high-value woody perennial crops (e.g., trees and vines). A dendrometer continuously measures small fluctuations in stem diameter; this has been directly correlated to water stress measurements using traditional methods. While plant-based measures of water deficits are considered to be the best measures of water stress, current dendrometer methods are imprecise due to mechanical hysteresis and thermal expansion. The high-precision dendrometer created at the OPEnS Lab alleviates these key failure points using zero-thermal expansion carbon fiber, zero friction via a spring tensioning approach, and a linear magnetic encoder. In-lab tests and field deployments have validated device measurements and the execution of these pivotal qualities. Mass deployment of these automated dendrometers has the potential to provide a continuous record of water stress, providing valuable decision support for irrigation management.