Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 1024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765546

RESUMO

This study presents a novel three-dimensional (3D) tool "3D in vitro choice" for chemotaxis assays with cyst nematodes. The original 3D in vitro choice was customized through digital printing. Freshly hatched second stage juveniles (J2s) of the cyst nematode Globodera pallida were used as the nematode model to illustrate chemo-orientation behavior in the 3D system. The efficiency and reliability of the 3D in vitro choice were validated with 2% Phytagel as navigation medium, in three biological assays and using tomato root exudates or potato root border cells and their associated mucilage as a positive attractant as compared with water. For each biological assay, J2s were hatched from the same population of a single generation glasshouse-cultured cysts. This novel easy to use and low-cost 3d-device could be a useful replacement to Petri dishes assays in nematode behavioral studies due to the ease of deposition of nematodes and test substances, coupled with its distinctive zones that allow for precision in choice making by the nematodes.

2.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898830

RESUMO

Endoplasmic reticulum (ER) bodies are important organelles for root defense. However, little is known regarding the genetic control of their formation in root tissues. In the present study, (L.) Heynh. roots were dissected using laser-assisted microdissection (LAM) with minimal sample preparation (no fixation or embedding steps) and the expression of genes associated with ER body formation and function was assessed by real-time quantitative reverse-transcription polymerase chain reaction (RT-qRT-PCR) in the presence and absence of the defense phytohormone methyl jasmonate (MeJA). Zones of interest were identified in plants overexpressing a fluorescent construct; these being the root cap zone, meristematic zone, elongation zone, and differentiation zone. Given their role in ER body formation, the expression of the genes , , , , and was evaluated in the whole root and in the four dissected root zones using RT-qRT-PCR. Our data show that the expression level of all five genes differs in a root-zone-specific manner in untreated roots. They also reveal that all of them are overexpressed in response to MeJA with the two genes being the most highly overexpressed in the EZ. Finally, the gene, encoding for a transcription factor that regulates the expression of the four other genes, is the first to respond to MeJA, supporting its central role in ER body formation and function in root defense.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Perfilação da Expressão Gênica , Microdissecção e Captura a Laser , Plantas Geneticamente Modificadas
3.
Plant Cell ; 28(10): 2478-2492, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27624758

RESUMO

Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Domínio MADS/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Domínio MADS/genética , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Cell Physiol ; 56(1): 61-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25305245

RESUMO

The endoplasmic reticulum (ER) bodies are ER-derived structures that are found in Brassicaceae species and thought to play a role in defense. Here, we have investigated the occurrence, distribution and function of ER bodies in root cells of Raphanus sativus using a combination of microscopic and biochemical methods. We have also assessed the response of ER bodies to methyl jasmonate (MeJA), a phytohormone that mediates plant defense against wounding and pathogens. Our results show that (i) ER bodies do occur in different root cell types from the root cap region to the differentiation zone; (ii) they do accumulate a PYK10-like protein similar to the major marker protein of ER bodies that is involved in defense in Arabidopsis thaliana; and (iii) treatment of root cells with MeJA causes a significant increase in the number of ER bodies and the activity of ß-glucosidases. More importantly, MeJA was found to induce the formation of very long ER bodies that results from the fusion of small ones, a phenomenon that has not been reported in any other study so far. These findings demonstrate that MeJA impacts the number and morphology of functional ER bodies and stimulates ER body enzyme activities, probably to participate in defense responses of radish root. They also suggest that these structures may provide a defensive system specific to root cells.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Retículo Endoplasmático/metabolismo , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raphanus/efeitos dos fármacos , Genes Reporter , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Raphanus/citologia , Raphanus/genética , Raphanus/metabolismo , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
5.
Front Plant Sci ; 5: 499, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324850

RESUMO

Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger ß-1,3-linked galactan backbone with ß-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core ß,2-xylose, core α1,3-fucose residues, and Lewis(a) substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA