Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 20(20): 4052-4056, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738402

RESUMO

Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.

2.
Biosens Bioelectron ; 225: 115073, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701948

RESUMO

Point-of-care testing (POCT) platforms for microRNA (miRNA) detection have attracted considerable attention in recent years, due to the increasingly important role of miRNA as biomarkers for the diagnosis of many diseases, such as cancers. However, several limitations such as the requirement of enzyme-related amplification system, expensive preservation cost, sophisticated analysis instruments and tedious operations of conventional miRNA biosensing devices severely hinder their widespread applications. In this work, a portable and smart colorimetric analysis platform was developed by employing the ultrathin DNA-gold nanoparticle (AuNP) hybrid hydrogel film as the signaling unit and the enzyme-free entropy-driven dynamic DNA network (EDN) as the signal converter and amplification unit. By programming the DNA sequences of the EDN, the EDN could respond to a specific miRNA, with miRNA-155 or miRNA-21 as the model target, and release a converter DNA with amplified concentration to further trigger the release of AuNPs from the hydrogel film as a colorimetric signal output. To avoid the use of sophisticated spectral instruments, digital analysis based on primary three-color channel (R/G/B) was further introduced by using user-friendly camera and image processing software, and a detection limit at pM level was achieved. Moreover, by introducing H2O2-mediated AuNPs enlargement procedure in the colorimetric analysis platform, the detection limit for miRNA target could further be enhanced to fM level. The POCT platform is also portable and storable with a good storage stability for at least 45 days, suggesting its great potential in practical diagnosis applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , MicroRNAs/genética , MicroRNAs/análise , Ouro , Colorimetria/métodos , Peróxido de Hidrogênio , Entropia , Técnicas Biossensoriais/métodos , DNA/genética , Testes Imediatos , Limite de Detecção
3.
Biosens Bioelectron ; 210: 114290, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35489275

RESUMO

A portable, cost-effective and storable DNA-gold nanoparticle (AuNP) hybrid hydrogel film based biosensing system was developed, with AuNPs serving as both the crosslinking units of the film and the signaling units. Using a layer-by-layer assembly method, hydrogel film composed of three-dimensional hydrophilic network of densely packed AuNPs interconnected by responsive DNA structures was constructed onto a glass slide. By programming the sequence of DNA structures, target-responsive hybrid films were constructed. As a proof of concept, the sequence of a substrate DNA which can be identified and cleaved by Pb2+-dependent DNAzyme was encoded to construct Pb2+-responsive DNA-AuNP hybrid hydrogel film. The high-density packing of AuNPs as signal substances significantly improved the sensitivity of the ultrathin film biosensing system while reduced the cost of expensive DNA materials. A hydrogel film composed of 10 layers of assembled DNA-AuNP structures generated sufficient visual colorimetric signals for Pb2+ detection, with a detection limit of 2.6 nM. By introducing UO22+-dependent DNAzyme, the system could be further applied in the sensitive and selective detection of UO22+, with a detection limit of 10.3 nM. Compared with bulk-sized DNA hydrogel biosensing systems, the DNA-AuNP hydrogel film biosensing system exhibited faster response thanks to the sub-micrometer ultrathin film structures. Moreover, the protection of fragile non-covalently crosslinked DNA films with solid slides also facilitated the portable application and long-term storage of the resulting biosensing system, with 95% of the response signal retained after three months of storage. The DNA-AuNPs hydrogel film biosensing system is highly promising for future rapid on-site detection applications.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Análise Custo-Benefício , DNA , DNA Catalítico/química , Ouro/química , Íons , Chumbo , Nanopartículas Metálicas/química , Metilgalactosídeos
4.
Mar Drugs ; 19(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204792

RESUMO

Chattonella species, C. marina and C. ovata, are harmful raphidophycean flagellates known to have hemolytic effects on many marine organisms and resulting in massive ecological damage worldwide. However, knowledge of the toxigenic mechanism of these ichthyotoxic flagellates is still limited. Light was reported to be responsible for the hemolytic activity (HA) of Chattonella species. Therefore, the response of photoprotective, photosynthetic accessory pigments, the photosystem II (PSII) electron transport chain, as well as HA were investigated in non-axenic C. marina and C. ovata cultures under variable environmental conditions (light, iron and addition of photosynthetic inhibitors). HA and hydrogen peroxide (H2O2) were quantified using erythrocytes and pHPA assay. Results confirmed that% HA of Chattonella was initiated by light, but was not always elicited during cell division. Exponential growth of C. marina and C. ovata under the light over 100 µmol m-2 s-1 or iron-sufficient conditions elicited high hemolytic activity. Inhibitors of PSII reduced the HA of C. marina, but had no effect on C. ovata. The toxicological response indicated that HA in Chattonella was not associated with the photoprotective system, i.e., xanthophyll cycle and regulation of reactive oxygen species, nor the PSII electron transport chain, but most likely occurred during energy transport through the light-harvesting antenna pigments. A positive, highly significant relationship between HA and chlorophyll (chl) biosynthesis pigments, especially chl c2 and chl a, in both species, indicated that hemolytic toxin may be generated during electron/energy transfer through the chl c2 biosynthesis pathway.


Assuntos
Hemolíticos/metabolismo , Toxinas Marinhas/metabolismo , Fotossíntese/fisiologia , Estramenópilas/metabolismo , Biomarcadores/metabolismo , Clorofila/biossíntese , Clorofila/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Toxinas Marinhas/biossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Estramenópilas/patogenicidade
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120040, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146824

RESUMO

In view of the problem of the paralytic shellfish poison producing algae on-line measurement and identification, a new feature extraction method of paralytic shellfish poison producing algae measurement and identification based on quaternion principal component analysis (QPCA) is investigated. The three-dimensional (3D) fluorescence spectra of three common species of paralytic shellfish poison producing algae and eight species common of non paralytic shellfish poison producing algae are analyzed. The quaternion parallel representation model of algae three-dimensional fluorescence spectrum data is established, then the features of quaternion principal component is extracted to use as the input of k-nearest neighbor (KNN) classifier, and the identification of paralytic shellfish poison producing algae is realized by the three-dimensional fluorescence spectra coupled with quaternion principal component analysis. The results show that under the quaternion parallel representation model, the recognition accuracy rate of multiplication feature, modulus feature and summation feature is 90%, 95% and 100% respectively. Compared with that of the principal component analysis feature extraction method, the recognition accuracy rate in pure samples by summation feature of quaternion principal component is improved by 10%. This study provides an experimental basis for the accurate monitoring technology of three-dimensional fluorescence spectrum of paralytic shellfish poison producing algae.


Assuntos
Venenos , Frutos do Mar , Análise de Componente Principal
6.
ACS Appl Mater Interfaces ; 11(6): 6561-6567, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30656937

RESUMO

Visually observable pH-responsive luminescent materials are developed by integrating the properties of aggregation-induced emission enhancement of Cu nanoclusters (NCs) and the Ca2+-triggered gelatin of alginate. Sodium alginate, CaCO3 nanoparticles, and Cu NCs are dispersed in aqueous solution, which is in a transparent fluid state, showing weak photoluminescence (PL). The introduced H+ can react with the CaCO3 nanoparticles to produce free Ca2+, which can cross-link the alginate chains into gel networks. Meanwhile, a dramatic increase in the PL intensity of Cu NCs and a blue shift in the PL peak appeared, assigned to the Ca2+-induced enhancement and gelatin-induced enhancement, respectively. Their potential application as a sensor for glucose is also demonstrated based on the principle that glucose oxidase can recognize glucose and produce H+, which further triggers the above-mentioned two-stage enhancement. A linear relationship between the PL intensity and the concentration of glucose in the range of 0.1-2.0 mM is obtained, with the limit of detection calculated as 3.2 × 10-5 M.


Assuntos
Alginatos/química , Cobre/química , Glucose/análise , Medições Luminescentes/métodos , Nanopartículas Metálicas/química , Aminoácidos/química , Dopamina/química , Géis/química , Glucose/metabolismo , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio
7.
ACS Appl Mater Interfaces ; 10(37): 31697-31703, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136581

RESUMO

Smart window is a promising green technology with feature of tunable transparency under external stimuli to manage light transmission and solar energy. However, more functions based on the intelligent management of the solar spectrum need to be integrated into present smart windows. In this work, a dual-function smart window is fabricated by pairing the luminescent switch with the electrochromic window. The dual function is based on a single fluorine doped tin oxide coated glass functionalized with tungsten oxide and copper nanocluster, among which tungsten oxide serves as an electrochromic material and copper nanocluster provides photoinduced luminescence. Along with the regulation of the visible light based on the electrochromism of the window, the luminescence can be finely switched on and off, which establishes a pair of reversible states ("on" and "off") for the dual-function smart window. The contrast between two states reaches 88%. Furthermore, the manipulation of dual-function smart window is highly reversible with a short response time of 12.6 s. This prototype of dual-function smart window paves the way for developing multifunctional smart windows by integrating different functional materials into one smart window based on the rational management of the solar spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA