Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781103

RESUMO

Endocrine therapies (ET) with CDK4/6 inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of 22 ER+ breast cancer patient-derived xenografts (PDXs) demonstrated that PKMYT1, a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX organoids and xenografts, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.

2.
Science ; 384(6691): 106-112, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574125

RESUMO

The de novo design of small molecule-binding proteins has seen exciting recent progress; however, high-affinity binding and tunable specificity typically require laborious screening and optimization after computational design. We developed a computational procedure to design a protein that recognizes a common pharmacophore in a series of poly(ADP-ribose) polymerase-1 inhibitors. One of three designed proteins bound different inhibitors with affinities ranging from <5 nM to low micromolar. X-ray crystal structures confirmed the accuracy of the designed protein-drug interactions. Molecular dynamics simulations informed the role of water in binding. Binding free energy calculations performed directly on the designed models were in excellent agreement with the experimentally measured affinities. We conclude that de novo design of high-affinity small molecule-binding proteins with tuned interaction energies is feasible entirely from computation.


Assuntos
Farmacóforo , Inibidores de Poli(ADP-Ribose) Polimerases , Engenharia de Proteínas , Proteínas , Humanos , Sítios de Ligação , Ligantes , Simulação de Dinâmica Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica , Proteínas/química , Proteínas/genética , Engenharia de Proteínas/métodos
3.
Cancer Res ; 83(19): 3237-3251, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071495

RESUMO

Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE: Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.


Assuntos
Antineoplásicos , Neoplasias da Mama , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Mutação
4.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187746

RESUMO

The de novo design of small-molecule-binding proteins has seen exciting recent progress; however, the ability to achieve exquisite affinity for binding small molecules while tuning specificity has not yet been demonstrated directly from computation. Here, we develop a computational procedure that results in the highest affinity binders to date with predetermined relative affinities, targeting a series of PARP1 inhibitors. Two of four designed proteins bound with affinities ranging from < 5 nM to low µM, in a predictable manner. X-ray crystal structures confirmed the accuracy of the designed protein-drug interactions. Molecular dynamics simulations informed the role of water in binding. Binding free-energy calculations performed directly on the designed models are in excellent agreement with the experimentally measured affinities, suggesting that the de novo design of small-molecule-binding proteins with tuned interaction energies is now feasible entirely from computation. We expect these methods to open many opportunities in biomedicine, including rapid sensor development, antidote design, and drug delivery vehicles.

5.
Cancer Discov ; 12(11): 2586-2605, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001024

RESUMO

Microscaled proteogenomics was deployed to probe the molecular basis for differential response to neoadjuvant carboplatin and docetaxel combination chemotherapy for triple-negative breast cancer (TNBC). Proteomic analyses of pretreatment patient biopsies uniquely revealed metabolic pathways, including oxidative phosphorylation, adipogenesis, and fatty acid metabolism, that were associated with resistance. Both proteomics and transcriptomics revealed that sensitivity was marked by elevation of DNA repair, E2F targets, G2-M checkpoint, interferon-gamma signaling, and immune-checkpoint components. Proteogenomic analyses of somatic copy-number aberrations identified a resistance-associated 19q13.31-33 deletion where LIG1, POLD1, and XRCC1 are located. In orthogonal datasets, LIG1 (DNA ligase I) gene deletion and/or low mRNA expression levels were associated with lack of pathologic complete response, higher chromosomal instability index (CIN), and poor prognosis in TNBC, as well as carboplatin-selective resistance in TNBC preclinical models. Hemizygous loss of LIG1 was also associated with higher CIN and poor prognosis in other cancer types, demonstrating broader clinical implications. SIGNIFICANCE: Proteogenomic analysis of triple-negative breast tumors revealed a complex landscape of chemotherapy response associations, including a 19q13.31-33 somatic deletion encoding genes serving lagging-strand DNA synthesis (LIG1, POLD1, and XRCC1), that correlate with lack of pathologic response, carboplatin-selective resistance, and, in pan-cancer studies, poor prognosis and CIN. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Proteogenômica , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carboplatina , Proteômica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Neoadjuvante , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
6.
Cancer Res ; 81(24): 6259-6272, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34711608

RESUMO

Genomic analysis has recently identified multiple ESR1 gene translocations in estrogen receptor alpha-positive (ERα+) metastatic breast cancer (MBC) that encode chimeric proteins whereby the ESR1 ligand binding domain (LBD) is replaced by C-terminal sequences from many different gene partners. Here we functionally screened 15 ESR1 fusions and identified 10 that promoted estradiol-independent cell growth, motility, invasion, epithelial-to-mesenchymal transition, and resistance to fulvestrant. RNA sequencing identified a gene expression pattern specific to functionally active ESR1 gene fusions that was subsequently reduced to a diagnostic 24-gene signature. This signature was further examined in 20 ERα+ patient-derived xenografts and in 55 ERα+ MBC samples. The 24-gene signature successfully identified cases harboring ESR1 gene fusions and also accurately diagnosed the presence of activating ESR1 LBD point mutations. Therefore, the 24-gene signature represents an efficient approach to screening samples for the presence of diverse somatic ESR1 mutations and translocations that drive endocrine treatment failure in MBC. SIGNIFICANCE: This study identifies a gene signature diagnostic for functional ESR1 fusions that drive poor outcome in advanced breast cancer, which could also help guide precision medicine approaches in patients harboring ESR1 mutations.


Assuntos
Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/genética , Mutação , Proteínas de Fusão Oncogênica/genética , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico , Taxa de Sobrevida , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Am J Respir Cell Mol Biol ; 62(4): 440-453, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697569

RESUMO

Abnormal activation of lung fibroblasts contributes to the initiation and progression of idiopathic pulmonary fibrosis (IPF). The objective of the present study was to investigate the role of fetal-lethal noncoding developmental regulatory RNA (FENDRR) in the activation of lung fibroblasts. Dysregulated long noncoding RNAs in IPF lungs were identified by next-generation sequencing analysis from the two online datasets. FENDRR expression in lung tissues from patients with IPF and mice with bleomycin-induced pulmonary fibrosis was determined by quantitative real-time PCR. IRP1 (iron-responsive element-binding protein 1), a protein partner of FENDRR, was identified by RNA pulldown-coupled mass spectrometric analysis and confirmed by RNA immunoprecipitation. The interaction region between FENDRR and IRP1 was determined by cross-linking immunoprecipitation. The in vivo role of FENDRR in pulmonary fibrosis was studied using adenovirus-mediated gene transfer in mice. The expression of FENDRR was downregulated in fibrotic human and mouse lungs as well as in primary lung fibroblasts isolated from bleomycin-treated mice. TGF-ß1 (transforming growth factor-ß1)-SMAD3 signaling inhibited FENDRR expression in lung fibroblasts. FENDRR was preferentially localized in the cytoplasm of adult lung fibroblasts and bound IRP1, suggesting its role in iron metabolism. FENDRR reduced pulmonary fibrosis by inhibiting fibroblast activation by reducing iron concentration and acting as a competing endogenous RNA of the profibrotic microRNA-214. Adenovirus-mediated FENDRR gene transfer in the mouse lung attenuated bleomycin-induced lung fibrosis and improved lung function. Our data suggest that FENDRR is an antifibrotic long noncoding RNA and a potential therapeutic target for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/genética , RNA Longo não Codificante/genética , Animais , Bleomicina/farmacologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/genética
8.
Breast ; 48 Suppl 1: S26-S30, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31839155

RESUMO

The estrogen receptor positive (ER+) subset is the dominant contributor to global deaths from breast cancer which now exceeds 500,000 deaths annually. Lethality is driven by endocrine resistance, which has been shown to be associated with high mutational rates and extreme subclonal diversity. Treatment forces subclonal selection until the patient eventually succumbs to metastatic treatment-resistant disease. Recently, we have been addressing several questions related to this process: What is the cause of the increased mutation rate in lethal ER+ breast cancer? Why is endocrine therapy resistance related to mutational load? What are the functions of the somatic mutations that are eventually selected in the treatment resistant and metastatic clones? These questions have provoked new mechanistic hypotheses that link resistance to endocrine agents to: (1) Specific defects in single strand break repair are associated with increased mortality from ER+ breast cancer [1,2]; (2) Loss/mutations of certain single strand break repair proteins that disrupt estrogen-regulated cell cycle control through the ATM, CHK2, CDK4 axis [1,2] thereby directly coupling endocrine therapy resistance to specific DNA repair defects; (3) Acquired mutations that drive metastasis include the generation of in-frame ESR1 gene fusions that activate epithelial-to-mesenchymal transition (EMT) driven metastasis as well as endocrine drug-resistant proliferation [3].


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores de Estrogênio/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Mutação , Receptores de Estrogênio/genética
9.
Am J Pathol ; 189(9): 1711-1720, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220453

RESUMO

Streptococcus pneumoniae is commonly found in patients with chronic obstructive pulmonary disease (COPD) and is linked to acute exacerbation of COPD. However, current clinical therapy neglects asymptomatic insidious S. pneumoniae colonization. We studied the roles of repeated exposure to S. pneumoniae in COPD progression using a mouse model. C57BL/6J mice were intranasally inoculated with S. pneumoniae ST262 every 4 weeks with or without cigarette smoke (CS) exposure up to 20 weeks to maintain persistent S. pneumoniae presence in the lower airways. Streptococcus pneumoniae enhanced CS-induced inflammatory cell infiltration at 12 to 20 weeks of exposure. Streptococcus pneumoniae also increased CS-induced release of inflammatory cytokines, including IL-1ß, tumor necrosis factor-α, IL-12 (p70), and IL-5 at 20 weeks of exposure. Moreover, a combination of CS and S. pneumoniae caused alveolar epithelial injury, a decline in lung function, and an increased expression of platelet-activating factor receptor and bacterial load. Our results suggest that repeated exposure to S. pneumoniae in lower airways exacerbates CS-induced COPD.


Assuntos
Modelos Animais de Doenças , Inflamação/etiologia , Infecções Pneumocócicas/complicações , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumar/efeitos adversos , Streptococcus pneumoniae/patogenicidade , Animais , Progressão da Doença , Feminino , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/microbiologia , Doença Pulmonar Obstrutiva Crônica/patologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-31106278

RESUMO

Endocrine therapy is essential for the treatment of patients with estrogen receptor positive (ER+) breast cancer, however, resistance and the development of metastatic disease is common. Understanding how ER+ breast cancer metastasizes is critical since the major cause of death in breast cancer is metastasis to distant organs. Results from many studies suggest dysregulation of the estrogen receptor alpha gene (ESR1 ) contributes to therapeutic resistance and metastatic biology. This review covers both pre-clinical and clinical evidence on the spectrum of ESR1 alterations including amplification, point mutations, and genomic rearrangement events driving treatment resistance and metastatic potential of ER+ breast cancer. Importantly, we describe how these ESR1 alterations may provide therapeutic opportunities to improve outcomes in patients with lethal, metastatic breast cancer.

11.
Mol Cell Oncol ; 5(6): e1526005, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30525098

RESUMO

Estrogen receptor alpha gene (ESR1) fusion transcripts have been identified in breast cancer but their role in breast cancer is not completely understood. Here, we report a causal role for ESR1 fusions in driving both endocrine therapy resistance and metastasis, and describe a therapeutic strategy to target ESR1 fusion-induced growth.

12.
J Cancer Res Clin Oncol ; 143(6): 1005-1011, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28286901

RESUMO

PURPOSE: Glucocorticoids (GCs) are of wide usage in the clinical treatment of lymphoblastic malignancies such as acute lymphoblastic leukemia. However, individually distinctive responsiveness to the GC therapy may attenuate their clinical efficacy, and more reliable predictor for GC resistance is still eagerly needed. Recent studies indicate that microRNAs (miRNAs), which demonstrate regulatory functions targeting mRNAs during the post-transcription, involved in the regulation of GCs sensitivity through several mechanisms, especially adjusting the magnitude of GC receptors (GRs), which mediates the cellular effects of GCs and plays a pivotal role in GCs sensitivity, inspiring that special miRNAs pattern could serve as the biomarkers to predict GC sensitivity and bring forth potential strategies for overcoming drug resistance. In this review, we discuss related miRNAs and their diverse effects exerted on multifaceted complexity of GCs responsiveness for further exploiting the molecular mechanism of GC resistance and future construction of the molecular diagnostic method and reverse GC resistance. METHODS: We have reviewed and searched for eligible literature relating to the effects of microRNAs on GC responsiveness from systematic PubMed searches. RESULTS: GC response can be mediated by miRNAs through influence on GC signaling pathway, leading to diverse glucocorticoid responsiveness. Mutations in miRNA gene also influence GC response. As well, GCs regulate the function of several miRNAs, and suggesting a bidirectional influence among them. CONCLUSIONS: It is possible and necessary that miRNAs serve as stable biomarkers and GC resistant patients would benefit from an effective and early screening test.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glucocorticoides/uso terapêutico , MicroRNAs/fisiologia , Receptores de Glucocorticoides/genética , Animais , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resultado do Tratamento
13.
Physiol Rep ; 4(17)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27582065

RESUMO

The accumulation of fibroblasts/myofibroblasts in fibrotic foci is one of the characteristics of idiopathic pulmonary fibrosis (IPF). Enhancer of zeste homolog 2 (EZH2) is the catalytic component of a multiprotein complex, polycomb repressive complex 2, which is involved in the trimethylation of histone H3 at lysine 27. In this study, we investigated the role and mechanisms of EZH2 in the differentiation of fibroblasts into myofibroblasts. We found that EZH2 was upregulated in the lungs of patients with IPF and in mice with bleomycin-induced lung fibrosis. The upregulation of EZH2 occurred in myofibroblasts. The inhibition of EZH2 by its inhibitor 3-deazaneplanocin A (DZNep) or an shRNA reduced the TGF-ß1-induced differentiation of human lung fibroblasts into myofibroblasts, as demonstrated by the expression of the myofibroblast markers α-smooth muscle actin and fibronectin, and contractility. DZNep inhibited Smad2/3 nuclear translocation without affecting Smad2/3 phosphorylation. DZNep treatment attenuated bleomycin-induced pulmonary fibrosis in mice. We conclude that EZH2 induces the differentiation of fibroblasts to myofibroblasts by enhancing Smad2/3 nuclear translocation.


Assuntos
Diferenciação Celular/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Adenosina/efeitos adversos , Adenosina/análogos & derivados , Adenosina/farmacologia , Adulto , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Feminino , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/patologia , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/fisiologia
14.
J Immunol ; 195(11): 5404-14, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503952

RESUMO

NF-κB is one of the best-characterized transcription factors, providing the link between early membrane-proximal signaling events and changes in many inflammatory genes. MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. In this study, we evaluated the role of miR-26b in the LPS-induced inflammatory response in bovine alveolar macrophages (bAMs). LPS stimulation of bAMs upregulated miR-26b at 1 h and downregulated it at 6 and 36 h. Overexpression of miR-26b in bAMs enhanced the LPS-induced mRNA expression of proinflammatory cytokines and chemokines, including TNF-α, IL-1ß, IL-8, and IL-10, but it directly inhibited that of IL-6. A similar trend was observed for the release of these cytokines and chemokines from bAMs. miR-26b directly bound the 3'-untranslated region of PTEN, leading to the reduction of PTEN protein in bAMs. miR-26b also enhanced the LPS-induced NF-κB signaling pathway, as revealed by increased NF-κB transcriptional activity and phosphorylation of p65, IκBα, IκB kinase, and Akt. Moreover, PTEN silencing increased the LPS-induced mRNA expression of TNF-α, IL-1ß, IL-6, IL-8, and IL-10 and upregulated the NF-κB pathway. Taken together, we conclude that miR-26b participates in the inflammatory response of LPS-stimulated bAMs by modulating the NF-κB pathway through targeting PTEN.


Assuntos
Macrófagos Alveolares/metabolismo , MicroRNAs/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Fator de Transcrição RelA/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Bovinos , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/imunologia , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Interleucina-8/biossíntese , Interleucina-8/genética , Lipopolissacarídeos , MicroRNAs/genética , Inibidor de NF-kappaB alfa , PTEN Fosfo-Hidrolase/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/biossíntese , Transdução de Sinais/imunologia , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
15.
Arch Biochem Biophys ; 566: 49-57, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25524739

RESUMO

Idiopathic pulmonary fibrosis (IPF) is one of the most common and severe interstitial lung diseases. Epithelial-to-mesenchymal transition (EMT) is a process whereby epithelial cells undergo transition to a mesenchymal phenotype. This process has been shown to contribute to IPF. MicroRNAs (miRNAs) are small non-coding RNAs of 18-24 nucleotides in length which regulate gene expression. Several studies have implicated miRNAs in EMT; however, specific miRNAs that regulate EMT in IPF have not yet been identified. In this study, we identified 6 up-regulated and 3 down-regulated miRNAs in a human lung epithelial cell EMT model using miRNA microarray and real-time PCR. Overexpression of one of these up-regulated miRNAs, miR-424, increased the expression of α-smooth muscle actin, an indicator of myofibroblast differentiation, but had no effects on the epithelial or mesenchymal cell markers. miR-424 enhanced the activity of the TGF-ß signaling pathway, as demonstrated by a luciferase reporter assay. Further experiments showed that miR-424 decreased the protein expression of Smurf2, a negative regulator of TGF-ß signaling, indicating that miR-424 exerts a forward regulatory loop in the TGF-ß signaling pathway. Our results suggest that miR-424 regulates the myofibroblast differentiation during EMT by potentiating the TGF-ß signaling pathway, likely through Smurf2.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ubiquitina-Proteína Ligases/genética , Actinas/genética , Actinas/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/metabolismo , Análise em Microsséries , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
16.
Biosens Bioelectron ; 30(1): 123-7, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21944184

RESUMO

Graphene/3,4,9,10-perylenetetracarboxylic acid (GPD) with three-dimensional porous structure has been successfully synthesized and served as redox probe to construct ultrasensitive electrochemical aptasensor. The GPD nanocomposite shows promoted electrochemical redox-activity of 3,4,9,10-perylenetetracarboxylic acid (PTCA) with an obvious well-defined cathodic peak from -0.7 to 0 V that never been seen from graphene or PTCA, which avoids miscellaneous redox peaks of PTCA in electrochemical characterization, offering a novel redox probe for electrochemical sensors with highly electrochemical active area and conductivity. To the best of our knowledge, this is the first study that utilizes PTCA self-derived redox-activity as redox probe in electrochemical sensors. Moreover, the interesting GPD possesses the advantages of membrane-forming property, providing a direct immobilization of redox probes on electrode surface. This simple process not only diminishes the conventional fussy immobilization of redox probes on the electrode surface, but also reduces the participation of the membrane materials that acted as a barrier of the electron propagation in redox probe immobilization. With thrombin as a model target, the redox probe-GPD based label-free electrochemical aptasensor shows a much higher sensitivity (a detection range from 0.001 nM to 40 nM with a detection limit of 200 fM) to that of analogous aptasensors produced from other redox probes.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Grafite/química , Nanopartículas/química , Perileno/análogos & derivados , Trombina/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotecnologia/instrumentação , Perileno/química , Coloração e Rotulagem , Trombina/química
17.
Biosens Bioelectron ; 26(10): 4236-40, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21536422

RESUMO

A simple electrochemical aptasensor for sensitive detection of thrombin was fabricated with G-quadruplex horseradish peroxidase-mimicking DNAzyme (hemin/G-quadruplex system) and blocking reagent-horseradish peroxidase as dual signal-amplification scheme. Gold nanoparticles (nano-Au) were firstly electrodeposited onto single wall nanotube (SWNT)-graphene modified electrode surface for the immobilization of electrochemical probe of nickel hexacyanoferrates nanoparticles (NiHCFNPs). Subsequently, another nano-Au layer was electrodeposited for further immobilization of thrombin aptamer (TBA), which later formed hemin/G-quadruplex system with hemin. Horseradish peroxidases (HRP) then served as blocking reagent to block possible remaining active sites and avoided the non-specific adsorption. In the presence of thrombin, the TBA binded to thrombin and the hemin released from the hemin/G-quadruplex electrocatalytic structure, increasing steric hindrance of the aptasensor and decomposing hemin/G-quadruplex electrocatalytic structure, which finally decreased the electrocatalytic efficiency of aptasensor toward H(2)O(2) in the presence of NiHCFNPs with a decreased electrochemical signal. On the basis of the synergistic amplifying action, a detection limit as low as 2 pM for thrombin was obtained.


Assuntos
Técnicas Biossensoriais/métodos , Trombina/análise , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/estatística & dados numéricos , DNA Catalítico , Técnicas Eletroquímicas , Quadruplex G , Ouro , Hemina , Peroxidase do Rábano Silvestre , Nanopartículas Metálicas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA