Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int Immunopharmacol ; 137: 112425, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38851160

RESUMO

The production of superoxide anions and other reactive oxygen species (ROS) by neutrophils is necessary for host defense against microbes. However, excessive ROS production can induce cell damage that participates in the inflammatory response. Superoxide anions are produced by the phagocyte NADPH oxidase, a multicomponent enzyme system consisting of two transmembrane proteins (gp91phox/NOX2 and p22phox) and four soluble cytosolic proteins (p40phox, p47phox, p67phox and the small G proteins Rac1/2). Stimulation of neutrophils by various agonists, such as the bacterial peptide formyl-Met-Leu-Phe (fMLF), induces NADPH oxidase activation and superoxide production, a process that is enhanced by the pro-inflammatory cytokines such as GM-CSF. The pathways involved in this GM-CSF-induced up-regulation or priming are not fully understood. Here we show that GM-CSF induces the activation of the prolyl cis/trans isomerase Pin1 in human neutrophils. Juglone and PiB, two selective Pin1 inhibitors, were able to block GM-CSF-induced priming of ROS production by human neutrophils. Interestingly, GM-CSF induced Pin1 binding to phosphorylated p47phox at Ser345. Neutrophils isolated from synovial fluid of patients with rheumatoid arthritis are known to be primed. Here we show that Pin1 activity was also increased in these neutrophils and that Pin1 inhibitors effectively inhibited ROS hyperproduction by the same cells. These results suggest that the prolyl cis/trans isomerase Pin1 may control GM-CSF-induced priming of ROS production by neutrophils and priming of neutrophils in synovial fluid of rheumatoid arthritis patients. Pharmacological targeting of Pin1 may be a valuable approach to the treatment of inflammation.

2.
Blood ; 139(16): 2512-2522, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35108370

RESUMO

Superoxide production by the phagocyte reduced NAD phosphate (NADPH) oxidase is essential for innate immunity as shown in chronic granulomatous disease (CGD), an immunodeficiency disease resulting from mutations in 1 of its genes. The NADPH oxidase is composed of 2 membrane proteins (gp91phox/NOX2 and p22phox) and 4 cytosolic proteins (p47phox, p67phox, p40phox, and Rac1/2). The phosphorylation of p47phox is required for NADPH oxidase activation in cells. As p47phox and p67phox can form a tight complex in cells, we hypothesized that p67phox could regulate p47phox phosphorylation. To investigate this hypothesis, we used phospho-specific antibodies against 5 major p47phox-phosphorylated sites (Ser304, Ser315, Ser320, Ser328, and Ser345) and neutrophils from healthy donors and from p67phox-/- CGD patients. Results showed that formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate induced a time- and a concentration-dependent phosphorylation of p47phox on Ser304, Ser315, Ser320, and Ser328 in healthy human neutrophils. Interestingly, in neutrophils and Epstein-Barr virus-transformed B lymphocytes from p67phox-/- CGD patients, phosphorylation of p47phox on serine residues was dramatically reduced. In COSphox cells, the presence of p67phox led to increased phosphorylation of p47phox. In vitro studies showed that recombinant p47phox was phosphorylated on Ser304, Ser315, Ser320, and Ser328 by different PKC isoforms and the addition of recombinant p67phox alone or in combination with p40phox potentiated this process. Thus, p67phox and p40phox are required for optimal p47phox phosphorylation on Ser304, Ser315, Ser320, and Ser328 in intact cells. Therefore, p67phox and p40phox are novel regulators of p47phox-phosphorylation.


Assuntos
Infecções por Vírus Epstein-Barr , Doença Granulomatosa Crônica , Ativação Enzimática , Infecções por Vírus Epstein-Barr/metabolismo , Doença Granulomatosa Crônica/genética , Herpesvirus Humano 4/metabolismo , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação
3.
Artigo em Inglês | MEDLINE | ID: mdl-34249119

RESUMO

Neutrophils play a pivotal role in innate immunity and in the inflammatory response. Neutrophils are very motile cells that are rapidly recruited to the inflammatory site as the body first line of defense. Their bactericidal activity is due to the release into the phagocytic vacuole, called phagosome, of several toxic molecules directed against microbes. Neutrophil stimulation induces release of this arsenal into the phagosome and induces the assembly at the membrane of subunits of the NAPDH oxidase, the enzyme responsible for the production of superoxide anion that gives rise to other reactive oxygen species (ROS), a process called respiratory burst. Altogether, they are responsible for the bactericidal activity of the neutrophils. Excessive activation of neutrophils can lead to extensive release of these toxic agents, inducing tissue injury and the inflammatory reaction. Envenomation, caused by different animal species (bees, wasps, scorpions, snakes etc.), is well known to induce a local and acute inflammatory reaction, characterized by recruitment and activation of leukocytes and the release of several inflammatory mediators, including prostaglandins and cytokines. Venoms contain several molecules such as enzymes (phospholipase A2, L-amino acid oxidase and proteases, among others) and peptides (disintegrins, mastoporan, parabutoporin etc.). These molecules are able to stimulate or inhibit ROS production by neutrophils. The present review article gives a general overview of the main neutrophil functions focusing on ROS production and summarizes how venoms and venom molecules can affect this function.

4.
J. venom. anim. toxins incl. trop. dis ; 27: e20200179, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1279402

RESUMO

Neutrophils play a pivotal role in innate immunity and in the inflammatory response. Neutrophils are very motile cells that are rapidly recruited to the inflammatory site as the body first line of defense. Their bactericidal activity is due to the release into the phagocytic vacuole, called phagosome, of several toxic molecules directed against microbes. Neutrophil stimulation induces release of this arsenal into the phagosome and induces the assembly at the membrane of subunits of the NAPDH oxidase, the enzyme responsible for the production of superoxide anion that gives rise to other reactive oxygen species (ROS), a process called respiratory burst. Altogether, they are responsible for the bactericidal activity of the neutrophils. Excessive activation of neutrophils can lead to extensive release of these toxic agents, inducing tissue injury and the inflammatory reaction. Envenomation, caused by different animal species (bees, wasps, scorpions, snakes etc.), is well known to induce a local and acute inflammatory reaction, characterized by recruitment and activation of leukocytes and the release of several inflammatory mediators, including prostaglandins and cytokines. Venoms contain several molecules such as enzymes (phospholipase A2, L-amino acid oxidase and proteases, among others) and peptides (disintegrins, mastoporan, parabutoporin etc.). These molecules are able to stimulate or inhibit ROS production by neutrophils. The present review article gives a general overview of the main neutrophil functions focusing on ROS production and summarizes how venoms and venom molecules can affect this function.(AU)


Assuntos
Animais , Venenos/administração & dosagem , Espécies Reativas de Oxigênio , NADPH Oxidases , L-Aminoácido Oxidase , Neutrófilos , Anti-Inflamatórios
5.
Free Radic Biol Med ; 160: 19-27, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32758662

RESUMO

Superoxide anion production by neutrophils is essential for host defense against microbes. Superoxide anion generates other reactive oxygen species (ROS) that are very toxic for microbes and host cells, therefore their excessive production could induce inflammatory reactions and tissue injury. Cyclic adenosine monophosphate (cAMP) elevating agents are considered to be physiological inhibitors of superoxide production by neutrophils but the mechanisms involved in this inhibitory effect are poorly understood. Superoxide is produced by the phagocyte NADPH oxidase, a complex enzyme composed of two membrane subunits, gp91phox or NOX2 and p22phox, and four cytosolic components p47phox, p67phox, p40phox, and Rac2. Except Rac2, these proteins are known to be phosphorylated upon neutrophil stimulation. Here we show that forskolin, an activator of the adenylate cyclase-cAMP-PKA pathway, induced phosphorylation of gp91phox/NOX2 and inhibited fMLF-induced NADPH oxidase activation in human neutrophils. H89, a PKA inhibitor prevented the forskolin-induced phosphorylation of gp91phox and restored NADPH oxidase activation. Furthermore, PKA phosphorylated the recombinant gp91phox/NOX2-cytosolic C-terminal region in vitro only on a few specific peptides containing serine residues, as compared to PKC. Interestingly, phosphorylation of NOX2-Cter by PKA alone did not induce interaction with the cytosolic components p47phox, p67phox and Rac2, however it induced inhibition of PKC-induced interaction. Furthermore, PKA alone did not induce NOX2 electron transfer activity, however it inhibited PKC-induced activation. These results suggest that PKA phosphorylates NOX2 in human neutrophils, a process essential to limit ROS production and inflammation under physiological conditions. Our data identify the cAMP-PKA-NOX2-axis as a critical gatekeeper of neutrophil ROS production.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Neutrófilos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagócitos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
6.
J Mol Med (Berl) ; 97(5): 633-645, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843084

RESUMO

Cohen syndrome (CS) is a rare genetic disorder due to mutations in VPS13B gene. Among various clinical and biological features, CS patients suffer from inconsistent neutropenia, which is associated with recurrent but minor infections. We demonstrate here that this neutropenia results from an exaggerate rate of neutrophil apoptosis. Besides this increased cell death, which occurs in the absence of any endoplasmic reticulum stress or defect in neutrophil elastase (ELANE) expression or localization, all neutrophil functions appeared to be normal. We showed a disorganization of the Golgi apparatus in CS neutrophils precursors, that correlates with an altered glycosylation of ICAM-1 in these cells, as evidenced by a migration shift of the protein. Furthermore, a striking decrease in the expression of SERPINB1 gene, which encodes a critical component of neutrophil survival, was detected in CS neutrophils. These abnormalities may account for the excessive apoptosis of neutrophils leading to neutropenia in CS. KEY MESSAGES: Cohen syndrome patients' neutrophils display normal morphology and functions. Cohen syndrome patients' neutrophils have an increased rate of spontaneous apoptosis compared to healthy donors' neutrophils. No ER stress or defective ELA2 expression or glycosylation was observed in Cohen syndrome patients' neutrophils. SerpinB1 expression is significantly decreased in Cohen syndrome neutrophils as well as in VPS13B-deficient cells.


Assuntos
Apoptose , Dedos/anormalidades , Deficiência Intelectual/genética , Microcefalia/genética , Hipotonia Muscular/genética , Miopia/genética , Neutropenia/genética , Neutrófilos/patologia , Obesidade/genética , Degeneração Retiniana/genética , Serpinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Regulação para Baixo , Feminino , Dedos/patologia , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Masculino , Microcefalia/complicações , Microcefalia/patologia , Pessoa de Meia-Idade , Hipotonia Muscular/complicações , Hipotonia Muscular/patologia , Mutação , Miopia/complicações , Miopia/patologia , Neutropenia/etiologia , Neutropenia/patologia , Neutrófilos/metabolismo , Obesidade/complicações , Obesidade/patologia , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Adulto Jovem
7.
J Immunol ; 202(5): 1549-1558, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30665935

RESUMO

Superoxide anion production by the phagocyte NADPH oxidase plays a crucial role in host defenses and inflammatory reaction. The phagocyte NADPH oxidase is composed of cytosolic components (p40phox, p47phox, p67phox, and Rac1/2) and the membrane flavocytochrome b558, which is composed of two proteins: p22phox and gp91phox/NOX2. p22phox plays a crucial role in the stabilization of gp91phox in phagocytes and is also a docking site for p47phox during activation. In the current study, we have used a yeast two-hybrid approach to identify unknown partners of p22phox. Using the cytosolic C-terminal region of p22phox as bait to screen a human spleen cDNA library, we identified the protein interacting with amyloid precursor protein tail 1 (PAT1) as a potential partner of p22phox. The interaction between p22phox and PAT1 was further confirmed by in vitro GST pulldown and overlay assays and in intact neutrophils and COSphox cells by coimmunoprecipitation. We demonstrated that PAT1 is expressed in human neutrophils and monocytes and colocalizes with p22phox, as shown by confocal microscopy. Overexpression of PAT1 in human monocytes and in COSphox cells increased superoxide anion production and depletion of PAT1 by specific small interfering RNA inhibited this process. These data clearly identify PAT1 as a novel regulator of NADPH oxidase activation and superoxide anion production, a key phagocyte function.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Fagócitos/metabolismo , Superóxidos/metabolismo , Simportadores/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Ânions/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética
9.
Blood ; 130(15): 1734-1745, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28830888

RESUMO

Dendritic cells (DCs) are a heterogeneous population of professional antigen-presenting cells and are key cells of the immune system, acquiring different phenotypes in accordance with their localization during the immune response. A subset of inflammatory DCs is derived from circulating monocytes (Mo) and has a key role in inflammation and infection. The pathways controlling Mo-DC differentiation are not fully understood. Our objective was to investigate the possible role of nicotinamide adenine dinucleotide phosphate reduced form oxidases (NOXs) in Mo-DC differentiation. In this study, we revealed that Mo-DC differentiation was inhibited by NOX inhibitors and reactive oxygen species scavengers. We show that the Mo-DC differentiation was dependent on p22phox, and not on gp91phox/NOX2, as shown by the reduced Mo-DC differentiation observed in chronic granulomatous disease patients lacking p22phox. Moreover, we revealed that NOX5 expression was strongly increased during Mo-DC differentiation, but not during Mo-macrophage differentiation. NOX5 was expressed in circulating myeloid DC, and at a lower level in plasmacytoid DC. Interestingly, NOX5 was localized at the outer membrane of the mitochondria and interacted with p22phox in Mo-DC. Selective inhibitors and small interfering RNAs for NOX5 indicated that NOX5 controlled Mo-DC differentiation by regulating the JAK/STAT/MAPK and NFκB pathways. These data demonstrate that the NOX5-p22phox complex drives Mo-DC differentiation, and thus could be critical for immunity and inflammation.


Assuntos
Diferenciação Celular , Células Dendríticas/citologia , Proteínas de Membrana/metabolismo , Monócitos/citologia , NADPH Oxidases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 5 , NADPH Oxidases/antagonistas & inibidores , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Clin Infect Dis ; 64(6): 767-775, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28362954

RESUMO

Background: Although prognosis of Chronic Granulomatous Disease (CGD) has greatly improved, few studies have focused on its long-term outcome. We studied the clinical course and sequelae of CGD patients diagnosed before age 16, at various adult time points. Method: Cross-sectional French nationwide retrospective study of patients screened through the National Reference Center for Primary Immunodeficiencies (CEREDIH) registry. Results: Eighty CGD patients (71 males [88.7%], 59 X-linked [73.7%], median age 23.9 years [minimum, 16.6; maximum, 59.9]) were included, Median ages at diagnosis and last follow-up were 2.52 and 23.9 years, respectively. Seven patients underwent hematopoietic stem cell transplantation. A total of 553 infections requiring hospitalization occurred in 2017 patient-years. The most common site of infection was pulmonary (31%). Aspergillus spp. (17%) and Staphylococcus aureus (10.7%) were the commonest pathogens. A total of 224 inflammatory episodes occurred in 71 patients, mainly digestive (50%). Their characteristics as well as their annual frequency did not vary before and after age 16. Main sequelae were a small adult height and weight and mild chronic restrictive respiratory failure. At age 16, only 53% of patients were in high school. After age 30 years, 9/13 patients were working. Ten patients died during adulthood. Conclusions: Adult CGD patients displayed similar characteristics and rates of severe infections and inflammatory episodes that those of childhood. The high rate of handicap has become a matter of medical and social consideration. Careful follow-up in centers of expertise is strongly recommended and an extended indication of curative treatment by HSCT should be considered.


Assuntos
Doença Granulomatosa Crônica/epidemiologia , Adolescente , Fatores Etários , Antibioticoprofilaxia , Autoimunidade , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/etiologia , Infecções Bacterianas/prevenção & controle , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Estudos Transversais , Feminino , França/epidemiologia , Doença Granulomatosa Crônica/complicações , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/mortalidade , Humanos , Lactente , Recém-Nascido , Masculino , Micoses/tratamento farmacológico , Micoses/epidemiologia , Micoses/etiologia , Micoses/prevenção & controle , Fenótipo , Vigilância da População , Sistema de Registros , Estudos Retrospectivos , Análise de Sobrevida , Avaliação de Sintomas
11.
Immunol Rev ; 273(1): 180-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27558335

RESUMO

Neutrophils are the major circulating white blood cells in humans. They play an essential role in host defense against pathogens. In healthy individuals, circulating neutrophils are in a dormant state with very low efficiency of capture and arrest on the quiescent endothelium. Upon infection and subsequent release of pro-inflammatory mediators, the vascular endothelium signals to circulating neutrophils to roll, adhere, and cross the endothelial barrier. Neutrophils migrate toward the infection site along a gradient of chemo-attractants, then recognize and engulf the pathogen. To kill this pathogen entrapped inside the vacuole, neutrophils produce and release high quantities of antibacterial peptides, proteases, and reactive oxygen species (ROS). The robust ROS production is also called 'the respiratory burst', and the NADPH oxidase or NOX2 is the enzyme responsible for the production of superoxide anion, leading to other ROS. In vitro, several soluble and particulate agonists induce neutrophil ROS production. This process can be enhanced by prior neutrophil treatment with 'priming' agents, which alone do not induce a respiratory burst. In this review, we will describe the priming process and discuss the beneficial role of controlled neutrophil priming in host defense and the detrimental effect of excessive neutrophil priming in inflammatory diseases.


Assuntos
Imunidade Inata , Inflamação/imunologia , Ativação de Neutrófilo , Neutrófilos/fisiologia , Explosão Respiratória , Animais , Comunicação Celular , Humanos , Espécies Reativas de Oxigênio/metabolismo , Migração Transendotelial e Transepitelial
12.
Oxid Med Cell Longev ; 2016: 9346242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27528888

RESUMO

In pathological situations such as ischemia-reperfusion and acute respiratory distress syndrome, reactive oxygen species (ROS) are produced by different systems which are involved in endothelial cells injury, ultimately leading to severe organ dysfunctions. The aim of this work was to study the effect of ROS produced by hypoxanthine-xanthine oxidase (Hx-XO) on the adhesion of human umbilical vein endothelial cells (HUVEC) and on the signaling pathways involved. Results show that Hx-XO-derived ROS induced an increase in HUVEC adhesion in the early stages of the process (less than 30 min), followed by a decrease in adhesion in the later stages of the process. Interestingly, Hx-XO-derived ROS induced the same biphasic effect on the phosphorylation of the focal adhesion kinase (FAK), a nonreceptor tyrosine kinase critical for cell adhesion, but not on ERK1/2 phosphorylation. The biphasic effect was not seen with ERK1/2 where a decrease in phosphorylation only was observed. Wortmannin, a PI3-kinase inhibitor, inhibited ROS-induced cell adhesion and FAK phosphorylation. Orthovanadate, a protein tyrosine phosphatase inhibitor, and Resveratrol (Resv), an antioxidant agent, protected FAK and ERK1/2 from dephosphorylation and HUVEC from ROS-induced loss of adhesion. This study shows that ROS could have both stimulatory and inhibitory effects on HUVEC adhesion and FAK phosphorylation and suggests that PI3-kinase and tyrosine phosphatase control these effects.


Assuntos
Adesão Celular/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xantina Oxidase/farmacologia , Androstadienos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipoxantina/farmacologia , Imunoprecipitação , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Resveratrol , Estilbenos/farmacologia , Wortmanina , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
13.
J Leukoc Biol ; 97(6): 1081-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877926

RESUMO

Neutrophils play a key role in host defense against invading pathogens by releasing toxic agents, such as ROS and antimicrobial peptides. Human neutrophils express several TLRs that recognize a variety of microbial motifs. The interaction between TLR and their agonists is believed to help neutrophils to recognize and to kill pathogens efficiently by increasing their activation, a process called priming. However, excessive activation can induce tissue injury and thereby, contribute to inflammatory disorders. Agonists that activate TLR7 and TLR8 induce priming of neutrophil ROS production; however, which receptor is involved in this process has not been elucidated. In this study, we show that the selective TLR8 agonist, CL075 (3M002), induced a dramatic increase of fMLF-stimulated NOX2 activation, whereas the selective TLR7 agonist, loxoribine, failed to induce any priming effect. Interestingly, CL075, but not loxoribine, induced the phosphorylation of the NOX2 cytosolic component p47phox on several serines and the phosphorylation of p38MAPK and ERK1/2. The inhibitor of p38MAPK completely blocked CL075-induced phosphorylation of p47phox Ser345. Moreover, CL075, but not loxoribine, induced the activation of the proline isomerase Pin1, and juglone, a Pin1 inhibitor, prevented CL075-mediated priming of fMLF-induced superoxide production. These results indicate that TLR8, but not TLR7, is involved in priming of human neutrophil ROS production by inducing the phosphorylation of p47phox and p38MAPK and that Pin1 is also involved in this process.


Assuntos
NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Espécies Reativas de Oxigênio/agonistas , Receptor 8 Toll-Like/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Ativação Enzimática , Regulação da Expressão Gênica , Guanosina/análogos & derivados , Guanosina/farmacologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADPH Oxidase 2 , NADPH Oxidases/genética , Peptidilprolil Isomerase de Interação com NIMA , Naftoquinonas/farmacologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Fosforilação , Cultura Primária de Células , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tiazóis/farmacologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
Eur Respir J ; 45(6): 1613-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25614174

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by failure of superoxide production in phagocytic cells. The disease is characterised by recurrent infections and inflammatory events, frequently affecting the lungs. Improvement of life expectancy now allows most patients to reach adulthood. We aimed to describe the pattern of pulmonary manifestations occurring during adulthood in CGD patients. This was a retrospective study of the French national cohort of adult patients (≥16 years old) with CGD. Medical data were obtained for 67 adult patients. Pulmonary manifestations affected two-thirds of adult patients. Their incidence was significantly higher than in childhood (mean annual rate 0.22 versus 0.07, p=0.01). Infectious risk persisted despite anti-infectious prophylaxis. Invasive fungal infections were frequent (0.11 per year per patient) and asymptomatic in 37% of the cases. They often required lung biopsy for diagnosis (10 out of 30). Noninfectious respiratory events concerned 28% of adult patients, frequently associated with a concomitant fungal infection (40%). They were more frequent in patients with the X-linked form of CGD. Immune-modulator therapies were required in most cases (70%). Respiratory manifestations are major complications of CGD in adulthood. Noninfectious pulmonary manifestations are as deleterious as infectious pneumonia. A specific respiratory monitoring is necessary.


Assuntos
Doença Granulomatosa Crônica/complicações , Pneumopatias Fúngicas/etiologia , Pulmão/patologia , Pneumonia Bacteriana/etiologia , Adolescente , Adulto , Anti-Infecciosos/uso terapêutico , Doenças Assintomáticas , Biópsia , Estudos de Coortes , Feminino , Doença Granulomatosa Crônica/tratamento farmacológico , Doença Granulomatosa Crônica/genética , Humanos , Fatores Imunológicos/uso terapêutico , Pneumopatias/etiologia , Pneumopatias Fúngicas/diagnóstico , Pneumopatias Fúngicas/tratamento farmacológico , Masculino , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , NADPH Oxidase 2 , NADPH Oxidases/genética , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/tratamento farmacológico , Estudos Retrospectivos , Adulto Jovem
15.
Methods Mol Biol ; 1124: 405-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24504964

RESUMO

Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce reactive oxygen species (ROS) such as superoxide anion (O2 (∙-)), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl), a process referred to as the respiratory burst. The enzyme responsible for this process is called the NADPH oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two transmembrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox), and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. The NADPH oxidase is in a resting state in circulating neutrophils, and its activation can be induced by a large number of soluble and particulate agents such as the formylated peptide, formyl-methionyl-leucyl-phenylalanine (fMLF). This activation can be enhanced or "primed" by pro-inflammatory cytokines, LPS and other agents. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS that can damage surrounding tissues and participate to inflammation. In this chapter, we describe the techniques used to measure priming of the NADPH oxidase in human neutrophils.


Assuntos
Neutrófilos/fisiologia , Explosão Respiratória/fisiologia , Separação Celular/métodos , Citocromos c/metabolismo , Citometria de Fluxo/métodos , Humanos , Medições Luminescentes/métodos , Ativação de Neutrófilo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
16.
Haematologica ; 98(10): 1517-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23975181

RESUMO

Myeloproliferative disorders are associated with increased risk of thrombosis and vascular complications. The pathogenesis of these complications is not completely known. Reactive oxygen species produced by the neutrophil NADPH oxidase could have a role in this process. The aim of this study was to evaluate reactive oxygen species production by neutrophils of myeloproliferative disorder patients. Patients with or without the JAK2 V617F mutation were characterized. Reactive oxygen species production was assessed by chemiluminescence, and phosphorylation of the NADPH oxidase subunit p47phox was analyzed by Western blots. In a comparison of controls and myeloproliferative disorder patients without the JAK2 V617F mutation, reactive oxygen species production by neutrophils from patients with the JAK2 V617F mutation was dramatically increased in non-stimulated and in stimulated conditions. This increase was associated with increased phosphorylation of the p47phox on Ser345 and of the uspstream kinase ERK1/2. In neutrophils from healthy donors, JAK2 can be activated by GM-CSF. GM-CSF-induced p47phox phosphorylation and priming of reactive oxygen species production are inhibited by the selective JAK2 inhibitors AG490 and lestaurtinib (CEP-701), supporting a role for JAK2 in the upregulation of NADPH oxidase activation. These findings show an increase in reactive oxygen species production and p47phox phosphorylation in neutrophils from myeloproliferative disorder patients with the JAK2 V617F mutation, and demonstrate that JAK2 is involved in GM-CSF-induced NADPH oxidase hyperactivation. As neutrophil hyperactivation could be implicated in the thrombophilic status of patients with myeloproliferative disorders, aberrant activation of JAK2 V617F, leading to excessive neutrophil reactive oxygen species production might play a role in this setting.


Assuntos
Janus Quinase 2/genética , Mutação/genética , Transtornos Mieloproliferativos/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/metabolismo , Fosforilação/fisiologia
17.
FASEB J ; 27(4): 1733-48, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23322165

RESUMO

Reactive oxygen species (ROS) production by NADPH oxidase 1 (NOX1), which is mainly expressed in colon epithelial cells, requires the membrane-bound component p22(PHOX) and the cytosolic partners NOX organizer 1 (NOXO1), NOX activator 1 (NOXA1), and Rac1. Contrary to that of its phagocyte counterpart NOX2, the molecular basis of NOX1 regulation is not clear. Because NOXO1 lacks the phosphorylated region found in its homolog p47(PHOX), the current view is that NOX1 activation occurs without NOXO1 phosphorylation. Here, however, we demonstrate that phorbol myristate acetate (PMA) stimulates NOXO1 phosphorylation in a transfected human embryonic kidney (HEK) 293 epithelial cell model via protein kinase C and identify Ser-154 as the major phosphorylated site. Endogenous NOXO1 from T84 colon epithelial cells was also phosphorylated, suggesting that NOXO1 phosphorylation is physiologically relevant. In transfected HEK-293 cells, PMA-induced phosphorylation on Ser-154 enhanced NOXO1 binding to NOXA1 (+97%) and to the p22(PHOX) C-terminal region (+384%), increased NOXO1 colocalization with p22(PHOX), and allowed optimal ROS production by NOX1 as demonstrated by the use of S154A and S154D mutants compared with that by wild-type NOXO1 (P<0.05). Pulldown experiments revealed that phos-phorylation on Ser-154 was sufficient to markedly enhance NOXO1 binding to NOXA1, which in turn acts as a molecular switch, allowing optimal interaction of NOXO1 with p22(PHOX). This study unexpectedly revealed that full assembly and activation of NOX1 is a tightly regulated process in which NOXO1 phosphorylation on Ser-154 is the initial trigger.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , NADH NADPH Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Células Cultivadas , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , NADPH Oxidase 1 , Fagócitos/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Serina/genética , Serina/metabolismo , Superóxidos/metabolismo , Transfecção/métodos
18.
Biochem Pharmacol ; 85(1): 92-100, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23085266

RESUMO

Reactive oxygen species (ROS) production by the neutrophil NADPH oxidase plays a key role in host defense against pathogens, such as bacteria and fungi. Zymosan a cell-wall preparation from Saccharomyces cerevisiae is largely used to activate neutrophils in its opsonized form. In this study, we show that non-opsonized zymosan alone induced ROS production by human neutrophils. Zymosan-induced ROS production is higher than the formyl-methionyl-leucyl-phenylalanine (fMLF)- or the phorbol myristate acetate (PMA)-induced ROS production but is lower than the one induced by opsonized zymosan. Most of the zymosan-induced ROS production is intracellular. Interestingly, zymosan induced the phosphorylation of the NADPH oxidase cytosolic component p47phox on several sites which are Ser315, Ser328 and Ser345. Zymosan induced also the activation of the small G-protein Rac2. Phosphorylation of the p47phox as well as Rac2 activation were inhibited by genistein a broad range protein tyrosine kinase inhibitor and by wortmannin a PI3Kinase inhibitor. GF109203X a PKC inhibitor inhibited phosphorylation of p47phox on Ser315 and Ser328. SB203580 and UO126, inhibitors of p38MAPK and ERK1/2-pathway, respectively, inhibited phosphorylation of p47phox on Ser345. Zymosan-induced ROS production was completely inhibited by genistein and wortmannin and partially inhibited by SB203580, UO126 and GF109203X. These results show that zymosan alone is able to activate NADPH oxidase in human neutrophils via the phosphorylation of p47phox and Rac2 activation and that a protein tyrosine kinase, PI3Kinase, p38MAPK, ERK1/2 and PKC are involved in this process. These pathways could be potential pharmacological targets to treat zymosan- and S. cerevisiae-induced inflammation.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Tirosina Quinases/metabolismo , Zimosan/farmacologia , Proteínas rac de Ligação ao GTP/metabolismo , Ativação Enzimática , Humanos , Técnicas In Vitro , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neutrófilos/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína RAC2 de Ligação ao GTP
19.
Am J Blood Res ; 2(3): 187-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119229

RESUMO

The phagocyte NADPH oxidase (NOX2) is known to be expressed in Epstein-Barr virus (EBV)-transformed human B lymphocytes. Phosphorylation of the NOX2 cytosolic subunit p47phox is required for phorbol myristate acetate (PMA)-induced NOX2 activation in EBV-transformed B lymphocytes, however the role of this process in receptor-mediated NOX2 activation is not known. Here, we used pansorbin which acts by cross linking cell surface IgG and transfected cells with mutated p47phox to address if the phosphorylation of this subunit is required for receptor-mediated NOX2 activation. We show that pansorbin induced NOX2 activation in a time and concentration-dependent manner, albeit at levels only of 20% of those induced by PMA. GF109203X, a PKC selective inhibitor, inhibited pansorbin as well as PMA-induced NOX2 activation. Using specific anti-phospho serine antibodies we showed that pansorbin induced p47phox phosphorylation on Ser304, 315, 320, 328, and 345 and kinetics of these phosphorylations preceed NOX2 activation. To determine whether the phosphorylation of p47phox is required for pansorbin-induced NOX2 activation, we transfected EBV-transformed lymphocytes deficent in p47phox with a plasmid expressing wild type p47phox or p47phox with all the phosphorylated serines mutated to alanines, p47phoxS(303-379)A. Results show that pansorbin-induced NOX2 activation was greatly decreased in lymphocytes expressing the mutant as compared to the wild-type p47phox. These results show that pansorbin induced p47phox phosphorylation on multiple sites in EBV-transformed B lymphocytes and this process is required for pansorbin-induced NADPH oxidase activation in these cells.

20.
J Immunol ; 189(9): 4657-65, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23002436

RESUMO

Superoxide anion production by the neutrophil NADPH oxidase plays a key role in host defense; however, excessive superoxide production is believed to participate to inflammatory reactions. Neutrophils express several TLR that recognize a variety of microbial motifs or agonists. The interaction between TLR and their agonists is believed to help neutrophils to recognize and eliminate the pathogen. However, the effects of some TLR agonists on the NADPH oxidase activation and the mechanisms controlling these effects have not been elucidated. In this study, we show that the TLR7/8 agonist CL097 by itself did not induce NADPH oxidase activation in human neutrophils, but induced a dramatic increase of fMLF-stimulated activation. Interestingly, CL097 induced cytochrome b558 translocation to the plasma membrane and the phosphorylation of the NADPH oxidase cytosolic component p47phox on Ser(345), Ser(328), and Ser(315). Phosphorylation of Ser(328) and Ser(315) was significantly increased in CL097-primed and fMLF-stimulated neutrophils. Phosphorylation of Ser(345), Ser(328), and Ser(315) was decreased by inhibitors of p38 MAPK and the ERK1/2 pathway. Phosphorylation of Ser(328) was decreased by a protein kinase C inhibitor. Genistein, a broad-range protein tyrosine kinase inhibitor, inhibited the phosphorylation of these serines. Our results also show that CL097 induced proline isomerase 1 (Pin1) activation and that juglone, a Pin1 inhibitor, inhibited CL097-mediated priming of fMLF-induced p47phox phosphorylation and superoxide production. These results show that the TLR7/8 agonist CL097 induces hyperactivation of the NADPH oxidase by stimulating the phosphorylation of p47phox on selective sites in human neutrophils and suggest that p38 MAPK, ERK1/2, protein kinase C, and Pin1 control this process.


Assuntos
Imidazóis/farmacologia , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Peptidilprolil Isomerase/fisiologia , Quinolinas/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Humanos , Imidazóis/uso terapêutico , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/prevenção & controle , Terapia de Alvo Molecular/métodos , NADPH Oxidases/fisiologia , Peptidilprolil Isomerase de Interação com NIMA , Neutrófilos/enzimologia , Neutrófilos/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia , Quinolinas/uso terapêutico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA