Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(26): 5016-5027, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35723603

RESUMO

Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and ß-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for ß(1,4)-galactosyltransferase (ß4GalT1). ß4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the ß-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, ß4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.


Assuntos
Lipossomos , Oximas , Acetilglucosamina , Glicoconjugados , Oligossacarídeos
2.
Bioinspir Biomim ; 16(4)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33706299

RESUMO

Objective. The use of diffusion magnetic resonance imaging (dMRI) opens the door to characterizing brain microstructure because water diffusion is anisotropic in axonal fibres in brain white matter and is sensitive to tissue microstructural changes. As dMRI becomes more sophisticated and microstructurally informative, it has become increasingly important to use a reference object (usually called an imaging phantom) for validation of dMRI. This study aims to develop axon-mimicking physical phantoms from biocopolymers and assess their feasibility for validating dMRI measurements.Approach. We employed a simple and one-step method-coaxial electrospinning-to prepare axon-mimicking hollow microfibres from polycaprolactone-b-polyethylene glycol (PCL-b-PEG) and poly(D, L-lactide-co-glycolic) acid (PLGA), and used them as building elements to create axon-mimicking phantoms. Electrospinning was firstly conducted using two types of PCL-b-PEG and two types of PLGA with different molecular weights in various solvents, with different polymer concentrations, for determining their spinnability. Polymer/solvent concentration combinations with good fibre spinnability were used as the shell material in the following co-electrospinning process in which the polyethylene oxide polymer was used as the core material. Following the microstructural characterization of both electrospun and co-electrospun fibres using optical and electron microscopy, two prototype phantoms were constructed from co-electrospun anisotropic hollow microfibres after inserting them into water-filled test tubes.Main results. Hollow microfibres that mimic the axon microstructure were successfully prepared from the appropriate core and shell material combinations. dMRI measurements of two phantoms on a 7 tesla (T) pre-clinical scanner revealed that diffusivity and anisotropy measurements are in the range of brain white matter.Significance. This feasibility study showed that co-electrospun PCL-b-PEG and PLGA microfibre-based axon-mimicking phantoms could be used in the validation of dMRI methods which seek to characterize white matter microstructure.


Assuntos
Biomimética , Imagem de Difusão por Ressonância Magnética , Imagens de Fantasmas , Polímeros , Substância Branca
3.
Mater Sci Eng C Mater Biol Appl ; 119: 111632, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321671

RESUMO

This study systematically investigates the role of graphene oxide (GO) and reduced GO (rGO)/silk-based composite micro/nano-fibrous scaffolds in regulating neuronal cell behavior in vitro, given the limited comparative studies on the effects of graphene family materials on nerve regeneration. Fibrous scaffolds can mimic the architecture of the native extracellular matrix and are potential candidates for tissue engineering peripheral nerves. Silk/GO micro/nano-fibrous scaffolds were electrospun with GO loadings 1 to 10 wt.%, and optionally post-reduced in situ to explore a family of electrically conductive non-woven silk/rGO scaffolds. Conductivities up to 4 × 10-5 S cm-1 were recorded in the dry state, which increased up to 3 × 10-4 S cm-1 after hydration. Neuronoma NG108-15 cells adhered and were viable on all substrates. Enhanced metabolic activity and proliferation were observed on the GO-containing scaffolds, and these cell responses were further promoted for electroactive silk/rGO. Neurite extensions up to 100 µm were achieved by day 5, with maximum outgrowth up to ~250 µm on some of the conductive substrates. These electroactive composite fibrous scaffolds exhibit potential to enhance the neuronal cell response and could be versatile supportive substrates for neural tissue engineering applications.


Assuntos
Fibroínas , Grafite , Tecido Nervoso , Engenharia Tecidual , Alicerces Teciduais
4.
ACS Biomater Sci Eng ; 6(12): 6906-6916, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320623

RESUMO

Peripheral nerve injury is a common consequence of trauma with low regenerative potential. Electroconductive scaffolds can provide appropriate cell growth microenvironments and synergistic cell guidance cues for nerve tissue engineering. In the present study, electrically conductive scaffolds were prepared by conjugating poly (3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT-PSS) or dimethyl sulfoxide (DMSO)-treated PEDOT-PSS on electrospun silk scaffolds. Conductance could be tuned by the coating concentration and was further boosted by DMSO treatment. Analogue NG108-15 neuronal cells were cultured on the scaffolds to evaluate neuronal cell growth, proliferation, and differentiation. Cellular viability was maintained on all scaffold groups while showing comparatively better metabolic activity and proliferation than neat silk. DMSO-treated PEDOT-PSS functionalized scaffolds partially outperformed their PEDOT-PSS counterparts. Differentiation assessments suggested that these PEDOT-PSS assembled silk scaffolds could support neurite sprouting, indicating that they show promise to be used as a future platform to restore electrochemical coupling at the site of injury and preserve normal nerve function.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Poliestirenos , Seda , Tiofenos
5.
Chem Commun (Camb) ; 56(89): 13792-13795, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33078185

RESUMO

Amino acids modified with an N-terminal anthracene group self-assemble into supramolecular hydrogels upon the addition of a range of salts or cell culture medium. Gel-phase photo-dimerisation of gelators results in hydrogel disassembly and was used to recover cells from 3D culture.

6.
Mater Sci Eng C Mater Biol Appl ; 101: 217-227, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029314

RESUMO

Diffusion magnetic resonance imaging (dMRI) is considered as a useful tool to study solid tumours. However, the interpretation of dMRI signal and validation of quantitative measurements of is challenging. One way to address these challenges is by using a standard reference material that can mimic tumour cell microstructure. There is a growing interest in using hollow polymeric microspheres, mainly prepared by multiple steps, as mimics of cells in healthy and diseased tissue. The present work reports on tumour cell-mimicking materials composed of hollow microspheres for application as a standard material in dMRI. These microspheres were prepared via one-step co-electrospraying process. The shell material was poly(d,l-lactic-co-glycolic acid) (PLGA) polymers with different molecule weights and/or ratios of glycolic acid-to-lactic, while the core was polyethylene glycol (PEG) or ethylene glycol. The resultant co-electrosprayed products were characterised by optical microscopy, scanning electron microscopy (SEM) and synchrotron X-ray micro-CT. These products were found to have variable structures and morphologies, e.g. from spherical particles with/without surface hole, through beaded fibres to smooth fibres, which mainly depend on PLGA composition and core materials. Only the shell material of PLGA polymer with ester terminated, Mw 50,000-75,000 g mol-1, and lactide:glycolide 85:15 formed hollow microspheres via the co-electrospraying process using the core material of 8 wt% PEG/chloroform as the core. A water-filled test object (or phantom) was designed and constructed from samples of the material generated from co-electrosprayed PLGA microspheres and tested on a 7 T MRI scanner. The preliminary MRI results provide evidence that hollow PLGA microspheres can restrict/hinder water diffusion as cells do in tumour tissue, implying that the phantom may be suitable for use as a quantitative validation and calibration tool for dMRI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Eletroquímica/métodos , Microesferas , Polímeros/química , Linhagem Celular Tumoral , Humanos , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Síncrotrons , Tomografia Computadorizada por Raios X
7.
Adv Healthc Mater ; 7(23): e1800308, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260575

RESUMO

Repair of peripheral nerve injuries depends upon complex biology stemming from the manifold and challenging injury-healing processes of the peripheral nervous system. While surgical treatment options are available, they tend to be characterized by poor clinical outcomes for the injured patients. This is particularly apparent in the clinical management of a nerve gap whereby nerve autograft remains the best clinical option despite numerous limitations; in addition, effective repair becomes progressively more difficult with larger gaps. Nerve conduit strategies based on tissue engineering approaches and the use of silk as scaffolding material have attracted much attention in recent years to overcome these limitations and meet the clinical demand of large gap nerve repair. This review examines the scientific advances made with silk-based conduits for peripheral nerve repair. The focus is on enhancing bioactivity of the conduits in terms of physical guidance cues, inner wall and lumen modification, and imbuing novel conductive functionalities.


Assuntos
Traumatismos dos Nervos Periféricos/terapia , Seda/química , Animais , Hormônio do Crescimento/farmacologia , Regeneração Tecidual Guiada , Humanos , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/patologia , Polímeros/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Seda/genética , Seda/metabolismo , Engenharia Tecidual
8.
Mater Des ; 137: 394-403, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29307950

RESUMO

Highly hydrophilic hollow polycaprolactone (PCL) microfibres were developed as building elements to create tissue-mimicking test objects (phantoms) for validation of diffusion magnetic resonance imaging (MRI). These microfibres were fabricated by the co-electrospinning of PCL-polysiloxane-based surfactant (PSi) mixture as shell and polyethylene oxide as core. The addition of PSi had a significant effect on the size of resultant electrospun fibres and the formation of hollow microfibres. The presence of PSi in both co-electrospun PCL microfibre surface and cross-section, revealed by X-ray energy dispersive spectroscopy (EDX), enabled water to wet these fibres completely (i.e., zero contact angle) and remained active for up to 12 months after immersing in water. PCL and PCL-PSi fibres with uniaxial orientation were constructed into water-filled phantoms. MR measurement revealed that water molecules diffuse anisotropically in the PCL-PSi phantom. Co-electrospun hollow PCL-PSi microfibres have desirable hydrophilic properties for the construction of a new generation of tissue-mimicking dMRI phantoms.

9.
Chem Commun (Camb) ; 54(11): 1347-1350, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29350727

RESUMO

ß(1,4)-Galactosyltransferase (ß4Gal-T1) and T. cruzi trans-sialidase (TcTS) have been used in a 'one-pot' cascade to provide vesicles (liposomes) with a trisaccharide coating. These soluble enzymes catalysed the transfer of galactose then sialic acid onto a synthetic N-acetylglucolipid embedded in the bilayers. Clustering of this substrate into microdomains increased the rate of sialylated lipid production, showing that an increase in ß4Gal-T1 activity is carried through the enzymatic cascade. These coatings modulated cell recognition. Hepatocellular carcinoma cells took up vesicles modified by ß4Gal-T1 alone more extensively than sialylated vesicles produced by 'one-pot' sequential enzymatic modification.


Assuntos
Galactosiltransferases/química , Glicolipídeos/metabolismo , Glicoproteínas/química , Lipossomos/metabolismo , Neuraminidase/química , Trissacarídeos/síntese química , Sequência de Carboidratos , Endocitose/fisiologia , Glicolipídeos/química , Glicosilação , Células Hep G2 , Humanos , Lipossomos/química , Trissacarídeos/química
10.
J Biomed Mater Res A ; 106(1): 255-264, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28891249

RESUMO

There is a clinical need for a synthetic bone graft substitute that can be used at sites of surgical intervention to promote bone regeneration. Poly(vinylphosphonic acid-co-acrylic acid) (PVPA-co-AA) has recently been identified as a potential candidate for use in bone tissue scaffolds. It is hypothesized that PVPA-co-AA can bind to divalent calcium ions on bone mineral surfaces to control matrix mineralization and promote bone formation. In this study, hydrogels of PVPA-co-AA have been produced and the effect of copolymer composition on the structure and properties of the gels was investigated. It was found that an increase in VPA content led to the production of hydrogels with high porosities and greater swelling capacities. Consequently, improved cell adhesion and proliferation was observed on these hydrogels, as well as superior cell spreading morphologies. Furthermore, whereas poly(acrylic acid) gels were shown to be relatively brittle, an increase in VPA content created more flexible hydrogels that can be more easily molded into bone defect sites. Therefore, this work demonstrates that the mechanical and cell adhesion properties of PVPA-co-AA hydrogels can be tuned for the specific application by altering the copolymer composition. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 255-264, 2018.


Assuntos
Acrilatos/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hidrogéis/farmacologia , Osteoblastos/efeitos dos fármacos , Acrilatos/síntese química , Acrilatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Teste de Materiais , Porosidade , Engenharia Tecidual , Molhabilidade
11.
J Biomed Mater Res A ; 106(1): 168-179, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28884508

RESUMO

There is a clear clinical need for a bioactive bone graft substitute. Poly(vinyl phosphonic acid-co-acrylic acid) (PVPA-co-AA) has been identified as a promising candidate for bone regeneration but there is little evidence to show its direct osteogenic effect on progenitor or mature cells. In this study mature osteoblast-like cells (SaOS-2) and human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were cultured with PVPA-co-AA polymers with different VPA:AA ratio and at different concentrations in vitro. We are the first to report the direct osteogenic effect of PVPA-co-AA polymer on bone cells and, more importantly, this effect was dependent on VPA:AA ratio and concentration. Under the optimized conditions, PVPA-co-AA polymer not only has an osteoconductive effect, enhancing SaOS-2 cell mineralization, but also has an osteoinductive effect to promote hBM-MSCs' osteogenic differentiation. Notably, the same PVPA-co-AA polymer at different concentrations could lead to differential osteogenic effects on both SaOS-2 and hBM-MSCs in vitro. This study furthers knowledge of the PVPA-co-AA polymer in osteogenic studies, which is critical when utilizing the PVPA-co-AA polymer for the design of novel bioactive polymeric tissue engineering scaffolds for future clinical applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 168-179, 2018.


Assuntos
Acrilatos/farmacologia , Transplante Ósseo/métodos , Quelantes de Cálcio/farmacologia , Organofosfonatos/farmacologia , Osteogênese/efeitos dos fármacos , Polivinil/farmacologia , Acrilatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Quelantes de Cálcio/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Organofosfonatos/química , Osteoblastos/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Polivinil/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Engenharia Tecidual
12.
Langmuir ; 33(46): 13262-13271, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28901145

RESUMO

We describe the co-electrospraying of hollow microspheres from a polycaprolactone (PCL) shell solution and various core solutions including water, cyclohexane, poly(ethylene oxide) (PEO), and polyethylene glycol (PEG), using different collectors. The morphologies of the resultant microspheres were characterized by scanning electron microscopy (SEM), confocal microscopy, and nano-X-ray computed tomography (nano-XCT). The core/shell solution miscibility played an important role in the co-electrospraying process and the formation of microsphere structures. Spherical particles were more likely to be produced from miscible combinations of core/shell solutions than from immiscible ones. Hollow PCL microspheres with a single hole in their surfaces were produced when an ethanol bath was used as the collector. The mechanism by which the core/shell structure is transformed into single-hole hollow microspheres is proposed to be primarily based on the evaporation through the shell and extraction by ethanol of the core solution and is described in detail. Additionally, we present a 3D macroscopic tubular structure composed of hollow PCL microspheres, directly assembled on a copper wire collector during co-electrospraying. SEM and nano-XCT confirm that microspheres in the 3D bulk structure remain hollow.

13.
J Biomed Mater Res A ; 105(10): 2865-2874, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28608414

RESUMO

We elucidate the effects of incorporating surfactants into electrospun poly (ɛ-caprolactone) (PCL) scaffolds on network homogeneity, cellular adherence and osteogenic differentiation. Lecithin was added with a range of concentrations to PCL solutions, which were electrospun to yield functionalized scaffolds. Addition of lecithin yielded a dose-dependent reduction in scaffold hydrophobicity, whilst reducing fiber width and hence increasing specific surface area. These changes in scaffold morphology were associated with increased cellular attachment of Saos-2 osteoblasts 3-h postseeding. Furthermore, cells on scaffolds showed comparable proliferation over 14 days of incubation to TCP controls. Through model-based interpretation of image analysis combined with gravimetric estimates of porosity, lecithin is shown to reduce scaffold porosity and mean pore size. Additionally, lecithin incorporation is found to reduce fiber curvature, resulting in increased scaffold specific elastic modulus. Low concentrations of lecithin were found to induce upregulation of several genes associated with osteogenesis in primary mesenchymal stem cells. The results demonstrate that functionalization of electrospun PCL scaffolds with lecithin can increase the biocompatibility and regenerative potential of these networks for bone tissue engineering applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2865-2874, 2017.


Assuntos
Caproatos/química , Lactonas/química , Lecitinas/química , Osteoblastos/citologia , Alicerces Teciduais/química , Adesão Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Módulo de Elasticidade , Humanos , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Osteogênese , Porosidade , Resistência à Tração , Engenharia Tecidual/métodos
14.
J Biomed Mater Res B Appl Biomater ; 105(8): 2581-2591, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27712036

RESUMO

The polymeric blend of poly (lactic-co-glycolic acid) (PLGA) and polyisoprene (PI) has recently been explored for application as stents for tracheal stenosis and spring for the treatment of craniosynostosis. From the positive results presented in other biomedical applications comes the possibility of investigating the application of this material as scaffold for tissue engineering (TE), acquiring a deeper knowledge about the polymeric blend by exploring a new processing technique while attending to the most fundamental demands of TE scaffolds. PLGA/PI was processed into randomly oriented microfibers through the dripping technique and submitted to physical-chemical and in vitro characterization. The production process of fibers did not show an effect over the polymer's chemical composition, despite the fact that PLGA and PI were observed to be immiscible. Mechanical assays reinforce the suitability of these scaffolds for soft tissue applications. Skeletal muscle cells demonstrated increases in metabolic activity and proliferation to the same levels of the control group. Human dermal fibroblasts didn't show the same behaviour, but presented cell growth with the same development profile as presented in the control group. It is plausible to believe that PLGA/PI fibrous three-dimensional scaffolds are suitable for applications in soft tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2581-2591, 2017.


Assuntos
Butadienos/química , Derme/metabolismo , Fibroblastos/metabolismo , Hemiterpenos/química , Ácido Láctico/química , Teste de Materiais , Mioblastos Esqueléticos/metabolismo , Pentanos/química , Ácido Poliglicólico/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular , Derme/citologia , Fibroblastos/citologia , Humanos , Camundongos , Mioblastos Esqueléticos/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
15.
Acta Biomater ; 46: 29-40, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27677593

RESUMO

Cell-based therapies for regeneration of intervertebral discs are regarded to hold promise for degenerative disc disease treatment, a condition that is strongly linked to lower back pain. A de novo self-assembling peptide hydrogel (SAPH), chosen for its biocompatibility, tailorable properties and nanofibrous architecture, was investigated as a cell carrier and scaffold for nucleus pulposus (NP) tissue engineering. Oscillatory rheology determined that the system would likely be deliverable via minimally invasive procedure and mechanical properties could be optimised to match the stiffness of the native human NP. After three-dimensional culture of NP cells (NPCs) in the SAPH, upregulation of NP-specific genes (KRT8, KRT18, FOXF1) confirmed that the system could restore the NP phenotype following de-differentiation during monolayer culture. Cell viability was high throughout culture whilst, similarly to NPCs in vivo, the viable cell population remained stable. Finally, the SAPH stimulated time-dependent increases in aggrecan and type II collagen deposition, two important NP extracellular matrix components. Results supported the hypothesis that the SAPH could be used as a cell delivery system and scaffold for the treatment of degenerative disc disease. STATEMENT OF SIGNIFICANCE: Lower back pain (LBP) prevalence is widespread due to an aging population and the limited efficacy of current treatments. As LBP is strongly associated with intervertebral disc (IVD) degeneration, it is thought that cell-based therapies could alleviate LBP by repairing IVD tissue. Various natural and synthetic biomaterials have been investigated as potential IVD tissue engineering scaffolds. Self-assembling peptide hydrogels (SAPHs) combine advantages of both natural and synthetic biomaterials; for example they are biocompatible and have easily modifiable properties. The present study demonstrated that a de novo SAPH had comparable strength to the native tissue, was injectable, restored the IVD cell phenotype and stimulated deposition of appropriate matrix components. Results illustrated the promise of SAPHs as scaffolds for IVD tissue engineering.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Disco Intervertebral/fisiologia , Peptídeos/farmacologia , Engenharia Tecidual/métodos , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Injeções , Disco Intervertebral/efeitos dos fármacos , Fenômenos Mecânicos , Núcleo Pulposo/citologia , Núcleo Pulposo/efeitos dos fármacos , Peptídeos/química , Sulfatos/metabolismo
16.
J Tissue Eng ; 7: 2041731416649789, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27493714

RESUMO

An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively) hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1), osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bone.

17.
Soft Matter ; 12(6): 1915-23, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26702608

RESUMO

Two complementary ß-sheet-forming decapeptides have been created that form binary self-repairing hydrogels upon combination of the respective free-flowing peptide solutions at pH 7 and >0.28 wt%. The component peptides showed little structure separately but formed extended ß-sheet fibres upon mixing, which became entangled to produce stiff hydrogels. Microscopy revealed two major structures; thin fibrils with a twisted or helical appearance and with widths comparable to the predicted lengths of the peptides within a ß-sheet, and thicker, longer, interwoven fibres that appear to comprise laterally-packed fibrils. A range of gel stiffnesses (G' from 0.05 to 100 kPa) could be attained in this system by altering the assembly conditions, stiffnesses that cover the rheological properties desirable for cell culture scaffolds. Doping in a RGD-tagged component peptide at 5 mol% improved 3T3 fibroblast attachment and viability compared to hydrogel fibres without RGD functionalisation.


Assuntos
Hidrogéis/química , Oligopeptídeos/química , Alicerces Teciduais/química , Amiloide/química , Estrutura Secundária de Proteína , Reologia
18.
Org Biomol Chem ; 13(43): 10751-61, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26360423

RESUMO

A simple synthetic route has been devised for the production of coating agents that can give multivalent displays of saccharides on the surface of magnetite nanoparticles and phospholipid vesicles. A versatile and potentially high-throughput condensation reaction allowed the rapid synthesis of a variety of glycosylhydrazide conjugates with lipid, resorcinol or catechol termini, each in good yield and high anomeric purity. The hydrolytic stability of these adducts was assessed in D2O at different pD values using (1)H-NMR spectroscopy, whilst quartz crystal microbalance with dissipation monitoring (QCM-D) confirmed that the saccharide functionality on bilayers and on nanoparticles was still available to lectins. These multivalent saccharide displays promoted nanoparticle interactions with cells, for example N-acetylglucosamine-coated nanoparticles interacted much more effectively with 3T3 fibroblasts than uncoated nanoparticles with these cells. Despite potential sensitivity to oxidation, catechol coatings on magnetite nanoparticles were found to be more stable and generate better nanoparticle interactions with fibroblasts than resorcinol coatings.


Assuntos
Acetilglucosamina/química , Lipossomos/química , Nanopartículas de Magnetita/química , Monossacarídeos/química , Fosfolipídeos/química , Células 3T3 , Acetilglucosamina/metabolismo , Animais , Lectinas/metabolismo , Bicamadas Lipídicas/química , Magnetismo , Camundongos , Monossacarídeos/metabolismo , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
19.
Phys Chem Chem Phys ; 17(24): 15579-88, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25785572

RESUMO

The magnetic release of catalytically active enzymes from vesicular compartments within aggregated nanomaterials has been demonstrated. These nanomaterials, magnetic nanoparticle-vesicle aggregates (MNPVs), were formed by the self-assembly of biotinylated silica-coated Fe3O4 nanoparticles, biotinylated vesicles and tetrameric avidin. The unique features of nanoscale magnetite allow adhesion between membranes to be combined with magnetically triggered transit of reagents across membranes. Adding short spacers between the adhesive biotin groups and the nanoparticle or vesicle surfaces was found to strengthen binding to avidin, with binding of avidin to biotinylated bilayers and biotinylated nanoparticles monitored by quartz crystal microgravimetry with dissipation (QCM-D). Three different reagents were released from the vesicle compartments of MNPVs by a pulse of alternating magnetic field, with the release of a dye modelling the release of small molecule substrates, and the release of cytochrome c modelling the release of biological polymers, such as enzymes. To confirm that enzymes could be released and maintain activity, trypsin was encapsulated and shown to digest casein after magnetically triggered release.


Assuntos
Avidina/metabolismo , Citocromos c/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/química , Avidina/química , Citocromos c/química , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Propriedades de Superfície
20.
Biointerphases ; 10(1): 011003, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25720765

RESUMO

Chondrocytes within mature cartilage reside in a 3D matrix and adopt a distinctive round morphology. A vast 2D-culture surface is well-known to induce chondrocyte dedifferentiation characterized by the loss of spherical morphology and ceased expression of chondrogenic markers. Methods to restore chondrogenesis so far only occur on a certain level producing varied cell subpopulations and inferior cartilage matrix; the critical parameters, especially for the pericellular microenvironment, are still to be precisely determined. In this study, arrays of 2D circular micropatterns were designed to hold single subcultured chondrocytes with stable adhesion. The chondrocytes rounded up forming a 3D architecture; they remodeled their cytoskeleton to resemble in-situ chondrocytes and expressed collagen II instead of collagen I or fibronectin. This technique suggested that pure physical constraints can induce chondrocytic phenotype restoration on a 2D surface; it also provides a new design pathway to precisely control the microenvironment surrounding every chondrocyte therefore to unify the redifferentiation level of individual cell.


Assuntos
Adesão Celular , Diferenciação Celular , Condrócitos/fisiologia , Propriedades de Superfície , Animais , Bovinos , Técnicas de Cultura de Células , Células Cultivadas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA