Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 366(6471): 1367-1372, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831666

RESUMO

The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.


Assuntos
Tamanho Corporal , Cadeia Alimentar , Baleias/anatomia & histologia , Baleias/fisiologia , Animais , Evolução Biológica , Biomassa , Ingestão de Energia , Euphausiacea , Comportamento Alimentar , Oceanos e Mares
2.
Proc Natl Acad Sci U S A ; 116(50): 25329-25332, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767746

RESUMO

The biology of the blue whale has long fascinated physiologists because of the animal's extreme size. Despite high energetic demands from a large body, low mass-specific metabolic rates are likely powered by low heart rates. Diving bradycardia should slow blood oxygen depletion and enhance dive time available for foraging at depth. However, blue whales exhibit a high-cost feeding mechanism, lunge feeding, whereby large volumes of prey-laden water are intermittently engulfed and filtered during dives. This paradox of such a large, slowly beating heart and the high cost of lunge feeding represents a unique test of our understanding of cardiac function, hemodynamics, and physiological limits to body size. Here, we used an electrocardiogram (ECG)-depth recorder tag to measure blue whale heart rates during foraging dives as deep as 184 m and as long as 16.5 min. Heart rates during dives were typically 4 to 8 beats min-1 (bpm) and as low as 2 bpm, while after-dive surface heart rates were 25 to 37 bpm, near the estimated maximum heart rate possible. Despite extreme bradycardia, we recorded a 2.5-fold increase above diving heart rate minima during the powered ascent phase of feeding lunges followed by a gradual decrease of heart rate during the prolonged glide as engulfed water is filtered. These heart rate dynamics explain the unique hemodynamic design in rorqual whales consisting of a large-diameter, highly compliant, elastic aortic arch that allows the aorta to accommodate blood ejected by the heart and maintain blood flow during the long and variable pauses between heartbeats.


Assuntos
Balaenoptera/fisiologia , Bradicardia/veterinária , Taquicardia/veterinária , Animais , Bradicardia/fisiopatologia , Eletrocardiografia , Comportamento Alimentar , Coração/fisiologia , Frequência Cardíaca , Oxigênio/metabolismo , Taquicardia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA