Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med ; 4(7): 457-477.e8, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172578

RESUMO

BACKGROUND: The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS: We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS: We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS: Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING: Funded by Fate Therapeutics and NIH (R01CA238039).


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Receptores Fc/metabolismo
2.
Cell Stem Cell ; 28(12): 2062-2075.e5, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34525347

RESUMO

Select subsets of immune effector cells have the greatest propensity to mediate antitumor responses. However, procuring these subsets is challenging, and cell-based immunotherapy is hampered by limited effector-cell persistence and lack of on-demand availability. To address these limitations, we generated a triple-gene-edited induced pluripotent stem cell (iPSC). The clonal iPSC line was engineered to express a high affinity, non-cleavable version of the Fc receptor CD16a and a membrane-bound interleukin (IL)-15/IL-15R fusion protein. The third edit was a knockout of the ecto-enzyme CD38, which hydrolyzes NAD+. Natural killer (NK) cells derived from these uniformly engineered iPSCs, termed iADAPT, displayed metabolic features and gene expression profiles mirroring those of cytomegalovirus-induced adaptive NK cells. iADAPT NK cells persisted in vivo in the absence of exogenous cytokine and elicited superior antitumor activity. Our findings suggest that unique subsets of the immune system can be modeled through iPSC technology for effective treatment of patients with advanced cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Células Cultivadas , Humanos , Imunoterapia , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/terapia
3.
J Immunol ; 207(5): 1377-1387, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380645

RESUMO

T cells are essential mediators of immune responses against infectious diseases and provide long-lived protection from reinfection. The differentiation of naive to effector T cells and the subsequent differentiation and persistence of memory T cell populations in response to infection is a highly regulated process. E protein transcription factors and their inhibitors, Id proteins, are important regulators of both CD4+ and CD8+ T cell responses; however, their regulation at the protein level has not been explored. Recently, the deubiquitinase USP1 was shown to stabilize Id2 and modulate cellular differentiation in osteosarcomas. In this study, we investigated a role for Usp1 in posttranslational control of Id2 and Id3 in murine T cells. We show that Usp1 was upregulated in T cells following activation in vitro or following infection in vivo, and the extent of Usp1 expression correlated with the degree of T cell expansion. Usp1 directly interacted with Id2 and Id3 following T cell activation. However, Usp1 deficiency did not impact Id protein abundance in effector T cells or alter effector T cell expansion or differentiation following a primary infection. Usp1 deficiency resulted in a gradual loss of memory CD8+ T cells over time and reduced Id2 protein levels and proliferation of effector CD8+ T cell following reinfection. Together, these results identify Usp1 as a player in modulating recall responses at the protein level and highlight differences in regulation of T cell responses between primary and subsequent infection encounters. Finally, our observations reveal differential regulation of Id2/3 proteins between immune versus nonimmune cell types.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteases Específicas de Ubiquitina/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imunidade Celular , Imunização , Memória Imunológica , Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Proteases Específicas de Ubiquitina/genética
4.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792560

RESUMO

Adoptive T cell therapies (ACTs) hold great promise in cancer treatment, but low overall response rates in patients with solid tumors underscore remaining challenges in realizing the potential of this cellular immunotherapy approach. Promoting CD8+ T cell adaptation to tissue residency represents an underutilized but promising strategy to improve tumor-infiltrating lymphocyte (TIL) function. Here, we report that deletion of the HIF negative regulator von Hippel-Lindau (VHL) in CD8+ T cells induced HIF-1α/HIF-2α-dependent differentiation of tissue-resident memory-like (Trm-like) TILs in mouse models of malignancy. VHL-deficient TILs accumulated in tumors and exhibited a core Trm signature despite an exhaustion-associated phenotype, which led to retained polyfunctionality and response to αPD-1 immunotherapy, resulting in tumor eradication and protective tissue-resident memory. VHL deficiency similarly facilitated enhanced accumulation of chimeric antigen receptor (CAR) T cells with a Trm-like phenotype in tumors. Thus, HIF activity in CD8+ TILs promotes accumulation and antitumor activity, providing a new strategy to enhance the efficacy of ACTs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Imunidade Celular , Memória Imunológica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Experimentais/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/imunologia
5.
Cell ; 166(5): 1117-1131.e14, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565342

RESUMO

Cancer cells must evade immune responses at distant sites to establish metastases. The lung is a frequent site for metastasis. We hypothesized that lung-specific immunoregulatory mechanisms create an immunologically permissive environment for tumor colonization. We found that T-cell-intrinsic expression of the oxygen-sensing prolyl-hydroxylase (PHD) proteins is required to maintain local tolerance against innocuous antigens in the lung but powerfully licenses colonization by circulating tumor cells. PHD proteins limit pulmonary type helper (Th)-1 responses, promote CD4(+)-regulatory T (Treg) cell induction, and restrain CD8(+) T cell effector function. Tumor colonization is accompanied by PHD-protein-dependent induction of pulmonary Treg cells and suppression of IFN-γ-dependent tumor clearance. T-cell-intrinsic deletion or pharmacological inhibition of PHD proteins limits tumor colonization of the lung and improves the efficacy of adoptive cell transfer immunotherapy. Collectively, PHD proteins function in T cells to coordinate distinct immunoregulatory programs within the lung that are permissive to cancer metastasis. PAPERCLIP.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Pulmão/imunologia , Oxigênio/metabolismo , Prolil Hidroxilases/metabolismo , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/enzimologia , Glicólise/imunologia , Interferon gama/imunologia , Pulmão/patologia , Neoplasias Pulmonares/terapia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Metástase Neoplásica , Neuropilina-1/metabolismo , Prolil Hidroxilases/genética , Linfócitos T Reguladores/enzimologia , Células Th1/enzimologia , Células Th1/imunologia
6.
Nat Immunol ; 17(7): 834-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213691

RESUMO

The differentiation of helper T cells into effector subsets is critical to host protection. Transcription factors of the E-protein and Id families are important arbiters of T cell development, but their role in the differentiation of the TH1 and TFH subsets of helper T cells is not well understood. Here, TH1 cells showed more robust Id2 expression than that of TFH cells, and depletion of Id2 via RNA-mediated interference increased the frequency of TFH cells. Furthermore, TH1 differentiation was blocked by Id2 deficiency, which led to E-protein-dependent accumulation of effector cells with mixed characteristics during viral infection and severely impaired the generation of TH1 cells following infection with Toxoplasma gondii. The TFH cell-defining transcriptional repressor Bcl6 bound the Id2 locus, which provides a mechanism for the bimodal Id2 expression and reciprocal development of TH1 cells and TFH cells.


Assuntos
Infecções por Arenaviridae/imunologia , Diferenciação Celular , Proteína 2 Inibidora de Diferenciação/metabolismo , Vírus da Coriomeningite Linfocítica/imunologia , Células Th1/fisiologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Feminino , Centro Germinativo/imunologia , Proteína 2 Inibidora de Diferenciação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Interferente Pequeno/genética , Células Th1/parasitologia , Células Th1/virologia
7.
J Neuroimmunol ; 282: 97-103, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25903735

RESUMO

Benzodiazepines increase vulnerability to infection through α1 subunit dependent Υ-amino-butyric-type-A (GABAA) signalling. Immune cell expression of GABAA receptors and the effect of diazepam on influenza infection was investigated. In patients with pneumonia, α1 GABAA subunits were expressed on alveolar macrophages and blood monocytes. In mice, influenza induced dynamic changes in immune cell GABAA subunit expression: α1 subunits decreased on alveolar macrophage, but increased on monocytes, CD4+ and CD8+ T cells. Following influenza viral infection, diazepam delayed weight loss on day 3 but later increased weight loss. Viral load was unaffected but increased bacterial superinfection was noted on day 10.


Assuntos
Diazepam/farmacologia , Moduladores GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Receptores de GABA-A/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Influenza Humana/patologia , Antígenos Comuns de Leucócito/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Orthomyxoviridae/patogenicidade , Fatores de Tempo
8.
J Immunol ; 192(11): 5415-25, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24748494

RESUMO

CD8 T cells are a key component of immunity to many viral infections. They achieve this through using an array of effector mechanisms, but precisely which component/s are required for protection against a respiratory orthopox virus infection remains unclear. Using a model of respiratory vaccinia virus infection in mice, we could specifically determine the relative contribution of perforin, TRAIL, and IFN-γ-mediated pathways in protection against virus induced morbidity and mortality. Unexpectedly, we observed that protection against death was mediated by IFN-γ without any involvement of the perforin or TRAIL-dependent pathways. IFN-γ mRNA and protein levels in the lung peaked between days 3 and 6 postinfection. This enhanced response coincided with the emergence of virus-specific CD8 T cells in the lung and the cessation of weight loss. Transfer experiments indicated that CD8 T cell-autonomous expression of IFN-γ restricts virus-induced lung pathology and dissemination to visceral tissues and is necessary for clearance of virus. Most significantly, we show that CD8 T cell-derived IFN-γ is sufficient to protect mice in the absence of CD4 and B-lymphocytes. Thus, our findings reveal a previously unappreciated mechanism by which effector CD8 T cells afford protection against a highly virulent respiratory orthopox virus infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Pulmão/imunologia , Doenças Respiratórias/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Interferon gama/genética , Pulmão/patologia , Camundongos , Camundongos Knockout , Doenças Respiratórias/genética , Doenças Respiratórias/patologia , Vacínia/genética , Vacínia/patologia
9.
Crit Care Med ; 41(7): 1627-36, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23478657

RESUMO

OBJECTIVES: Benzodiazepines are used for treating anxiety, epilepsy, muscle spasm, alcohol withdrawal, palliation, insomnia, and sedation as they allosterically modulate γ-amino-butyric acid type A (GABAA) receptors. Despite widespread use, the importance and mechanism of their immune side-effects are poorly understood. Herein we sought to elucidate the impact and mechanism of benzodiazepine-induced susceptibility to infection at anxiolytic doses in mice. DESIGN: Animal randomized controlled trial. SETTING: Laboratory. SUBJECTS: Adult female C57BL/6 and BALB/c mice. INTERVENTIONS: The effect of a subsedative, anxiolytic dose of diazepam (2 mg kg intraperitoneal) was investigated in a murine Streptococcus pneumoniae pneumonia model. MEASUREMENT AND MAIN RESULTS: Mortality, bacterial and cytokine load, cell recruitment, and intracellular pH were measured. Diazepam treatment did not affect immune homeostasis in the lung. However, diazepam increased mortality and bacterial load from S. pneumoniae pneumonia. The increases in mortality and bacterial load were reversed by a GABAA antagonist, bicuculline, indicating dependence on GABAA receptor signaling. While cell recruitment was unaltered by diazepam, the cytokine response to infection was affected, suggesting that local responses to the pathogen were perturbed. Macrophage and monocytes expressed benzodiazepine sensitive (α1-γ2) GABAA receptors. Interestingly macrophage GABAA receptor expression was regulated by bacterial toll-like receptor agonists and cytokines indicating an endogenous role in the immune response. Functionally diazepam appeared to counteract the endogenous down-regulation of GABAA signaling during infection. Consistent with augmented GABAA signaling, diazepam provoked intracellular acidosis in macrophage, leading to impaired cytokine production, bacterial phagocytosis and killing. In contrast, selective benzodiazepines that do not target the α1 GABAA subunit did not affect macrophage function ex vivo or increase susceptibility to pneumonia in vivo. CONCLUSIONS: Our data highlight the regulation of macrophage function by GABAA receptor signaling and the potential harm of benzodiazepine exposure during pneumonia. Therapeutically, selective drugs may improve the safety profile of benzodiazepines.


Assuntos
Benzodiazepinas/farmacologia , Pneumonia Bacteriana/fisiopatologia , Receptores de GABA-A/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Bicuculina/farmacologia , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/mortalidade , Distribuição Aleatória , Receptores de GABA-A/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Influenza Other Respir Viruses ; 7(6): 895-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23279978

RESUMO

Animal models of viral respiratory disease often use weight loss as a marker of disease severity; however, this may relate to dehydration and malnutrition that would be corrected clinically. We tested whether parenteral fluid therapy improved weight loss from influenza infection. BALB/c and C57BL/6 mice were infected with A/X31 (H3N2) influenza and randomized to intraperitoneal fluid therapy. Blood glucose was also measured post-viral infection on day 3 and 6 in BALB/c mice and on day 6 in C57BL/6 mice. Parenteral fluids did not alter weight loss or the immunological response to infection, and glucose levels were not abnormal.


Assuntos
Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/patologia , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Redução de Peso , Animais , Glicemia , Modelos Animais de Doenças , Feminino , Hidratação , Infusões Parenterais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia
11.
J Immunol ; 189(5): 2432-40, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22826318

RESUMO

The precise immune components required for protection against a respiratory Orthopoxvirus infection, such as human smallpox or monkeypox, remain to be fully identified. In this study, we used the virulent Western Reserve strain of vaccinia virus (VACV-WR) to model a primary respiratory Orthopoxvirus infection. Naive mice infected with VACV-WR mounted an early CD8 T cell response directed against dominant and subdominant VACV-WR Ags, followed by a CD4 T cell and Ig response. In contrast to other VACV-WR infection models that highlight the critical requirement for CD4 T cells and Ig, we found that only mice deficient in CD8 T cells presented with severe cachexia, pulmonary inflammation, viral dissemination, and 100% mortality. Depletion of CD8 T cells at specified times throughout infection highlighted that they perform their critical function between days 4 and 6 postinfection and that their protective requirement is critically dictated by initial viral load and virulence. Finally, the ability of adoptively transferred naive CD8 T cells to protect RAG⁻/⁻ mice against a lethal VACV-WR infection demonstrated that they are both necessary and sufficient in protecting against a primary VACV-WR infection of the respiratory tract.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Vacínia/imunologia , Vacínia/patologia , Animais , Linfócitos T CD8-Positivos/virologia , Modelos Animais de Doenças , Feminino , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Recuperação de Função Fisiológica/imunologia , Infecções Respiratórias/mortalidade , Índice de Gravidade de Doença , Vacínia/mortalidade , Vaccinia virus/imunologia
12.
Immunol Rev ; 244(1): 149-68, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22017437

RESUMO

The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.


Assuntos
Imunidade Celular , Imunidade nas Mucosas , Infecções por Poxviridae , Poxviridae/imunologia , Receptores OX40/imunologia , Sistema Respiratório/imunologia , Transdução de Sinais/imunologia , Vacinas Virais , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Expressão Gênica/imunologia , Humanos , Imunização , Memória Imunológica , Camundongos , Camundongos Knockout , Ligante OX40/genética , Ligante OX40/imunologia , Ligante OX40/metabolismo , Poxviridae/efeitos dos fármacos , Poxviridae/patogenicidade , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/virologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores OX40/genética , Receptores OX40/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Sistema Respiratório/citologia , Sistema Respiratório/virologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinas Virais/administração & dosagem
13.
J Infect Dis ; 204(7): 1086-94, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21881124

RESUMO

BACKGROUND: Previous studies have shown that the interaction of CD200R, a myeloid inhibitory receptor, with its ligand, CD200, is critical in the control of innate immune activation in the lung. METHODS AND RESULTS: Using a mouse model of bacterial superinfection following influenza, we show that an absence of CD200R (a negative regulator highly expressed by macrophages and dendritic cells), restricts commensal and exogenous bacterial invasiveness and completely prevents the mortality observed in wild-type mice. This benefit is due to a heightened innate immune response to influenza virus in cd200r knockout mice that limits immune pathogenesis and viral load. In wild-type mice, apoptotic cells expressing CD200 that we believe contribute to the suppressed innate immune response to bacteria dominate during the resolution phase of influenza-induced inflammation. We also show for the first time the presence of a variety of previously unidentified bacterial species in the lower airways that are significantly adjusted by influenza virus infection and may contribute to the pathophysiology of disease. CONCLUSIONS: The interaction of CD200 with CD200R therefore contributes to the hyporesponsive innate immune state following influenza virus infection that predisposes to secondary bacterial infection, a phenomenon that has the potential for immune modulation.


Assuntos
Antígenos CD/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Glicoproteínas de Membrana/imunologia , Infecções por Orthomyxoviridae/imunologia , Pneumonia Pneumocócica/imunologia , Superinfecção/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Imunidade Inata , Interleucina-1/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/patologia , Superinfecção/microbiologia , Fator de Necrose Tumoral alfa/metabolismo
14.
Lancet Infect Dis ; 10(5): 360-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20417418

RESUMO

Innate immune cells including macrophages, dendritic cells, and granulocytes are resident within or patrol very different microenvironments in the host. Their activity or responsiveness to antigen is dictated by site-specific factors. Because of the constant exposure to environmental antigens and commensal microorganisms, mucosal immunity needs to be more constrained than peripheral counterparts to prevent unnecessary inflammation. The epithelial surfaces that dominate all mucosal tissues provide an ideal regulator since innate immune cells are often in intimate contact with, or lie immediately beneath, them and a breach in epithelial integrity would signal a damaging event and release innate immunity from their influence. We discuss the role of the respiratory epithelium in raising the threshold of innate immune cell activation at homoeostasis, how its absence triggers innate immunity, and how inflammatory resolution often produces an altered homoeostatic environment that can affect the next inflammatory event at this site.


Assuntos
Imunidade nas Mucosas , Inflamação , Doenças Respiratórias/imunologia , Doenças Respiratórias/patologia , Viroses/imunologia , Viroses/patologia , Humanos , Doenças Respiratórias/virologia , Controle Social Formal
15.
J Immunol ; 183(11): 7006-13, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19915054

RESUMO

IL-9 is a cytokine of great current interest associated with allergic/Th2 responses. High levels of IL-9 are present in bronchial secretions from infants with respiratory syncytial virus (RSV) bronchiolitis. To test its effects in RSV disease with a Th2 profile, BALB/c mice were vaccinated with recombinant vaccinia virus expressing the RSV G protein. On RSV challenge, immunized mice developed augmented disease characterized by enhanced pulmonary Th2 and local IL-9 production peaking on days 7-10 of RSV infection. Depletion with anti-IL-9 Ab at vaccination or RSV challenge enhanced viral clearance. Depletion only at challenge had no effect on disease severity, whereas depletion at immunization and challenge enhanced Th1 responses, inhibited virus-specific IgG1 production, and enhanced disease severity. By contrast, depletion of IL-9 at immunization boosted IgG2a and inhibited the Th2 response and disease during subsequent infection without a concomitant increase in type 1 cytokines. Adoptive transfer of secondary memory CD4 T cells from the spleens of IL-9-depleted mice into naive recipients replicated many of the effects of depletion, indicating that IL-9 acts via CD4 T cells. Therefore, IL-9 is a previously unknown but key modulator of antiviral immunity, regulating T and B cell responses and having potent and specific effects on viral lung disease.


Assuntos
Memória Imunológica , Interleucina-9/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Células Th1/virologia , Células Th2/virologia
16.
Future Microbiol ; 4(3): 269-72, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19327113

RESUMO

Evaluation of: Morens DM, Taubenberger JK, Fauci AS: Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 198(7), 962-970 (2008). Secondary bacterial pneumonia is a common occurrence following lung influenza virus infection and leads to a significantly worse prognosis. This recent re-analysis of postmortem specimens and a vast number of reports from past influenza pandemics shows an extremely high frequency of lung colonization by bacterial species that are commonly found in the nasopharynx. This polymicrobial condition occurred in the preantibiotic era 1918-1919 influenza pandemic, but there is also evidence of bacterial co-infections in those outbreaks that occurred after antibiotic introduction. As such, antibiotic treatment should be included in any pandemic preparedness strategy. However, the choice of which antibiotic to use is important since some may even heighten morbidity and mortality.


Assuntos
Surtos de Doenças , Influenza Humana , Orthomyxoviridae , Pneumonia Bacteriana , Ampicilina/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Moléculas de Adesão Celular/metabolismo , Defesa Civil/tendências , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Nasofaringe/microbiologia , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/etiologia , Pneumonia Bacteriana/prevenção & controle
17.
Semin Immunol ; 21(3): 147-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19223202

RESUMO

Innate immunity at mucosal surfaces requires additional restraint to prevent inflammation to innocuous antigens or commensal microorganisms. The threshold above which airway macrophages become activated is raised by site-specific factors including the receptors for transforming growth factor beta, interleukin 10 and CD200; the ligands for which are produced by, or expressed on, respiratory epithelium. We discuss such site-specific regulation and how this is continually altered by prior infections. Resetting of innate reactivity represents a strategy for limiting excessive inflammation, but in some may pre-dispose to secondary bacterial pneumonia.


Assuntos
Antígenos CD/metabolismo , Antígenos de Superfície/metabolismo , Infecções Bacterianas/imunologia , Imunidade Inata , Receptores de Superfície Celular/metabolismo , Sistema Respiratório/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Regulação da Expressão Gênica , Humanos , Memória Imunológica , Interleucina-10/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Receptores de Orexina , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Sistema Respiratório/microbiologia , Fator de Crescimento Transformador beta/imunologia
18.
Nat Immunol ; 9(9): 1074-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18660812

RESUMO

The lung must maintain a high threshold of immune 'ignorance' to innocuous antigens to avoid inflammatory disease that depends on the balance of positive inflammatory signals and repressor pathways. We demonstrate here that airway macrophages had higher expression of the negative regulator CD200 receptor (CD200R) than did their systemic counterparts. Lung macrophages were restrained by CD200 expressed on airway epithelium. Mice lacking CD200 had more macrophage activity and enhanced sensitivity to influenza infection, which led to delayed resolution of inflammation and, ultimately, death. The administration of agonists that bind CD200R, however, prevented inflammatory lung disease. Thus, CD200R is critical for lung macrophage immune homeostasis in the resting state and limits inflammatory amplitude and duration during pulmonary influenza infection.


Assuntos
Antígenos CD/imunologia , Homeostase/fisiologia , Influenza Humana/imunologia , Pulmão/imunologia , Células Mieloides/imunologia , Animais , Citocinas/biossíntese , Homeostase/imunologia , Humanos , Influenza Humana/patologia , Pulmão/metabolismo , Camundongos
19.
J Exp Med ; 205(2): 323-9, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18227219

RESUMO

The World Health Organization estimates that lower respiratory tract infections (excluding tuberculosis) account for approximately 35% of all deaths caused by infectious diseases. In many cases, the cause of death may be caused by multiple pathogens, e.g., the life-threatening bacterial pneumonia observed in patients infected with influenza virus. The ability to evolve more efficient immunity on each successive encounter with antigen is the hallmark of the adaptive immune response. However, in the absence of cross-reactive T and B cell epitopes, one lung infection can modify immunity and pathology to the next for extended periods of time. We now report for the first time that this phenomenon is mediated by a sustained desensitization of lung sentinel cells to Toll-like receptor (TLR) ligands; this is an effect that lasts for several months after resolution of influenza or respiratory syncytial virus infection and is associated with reduced chemokine production and NF-kappaB activation in alveolar macrophages. Although such desensitization may be beneficial in alleviating overall immunopathology, the reduced neutrophil recruitment correlates with heightened bacterial load during secondary respiratory infection. Our data therefore suggests that post-viral desensitization to TLR signals may be one possible contributor to the common secondary bacterial pneumonia associated with pandemic and seasonal influenza infection.


Assuntos
Infecções Bacterianas/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções Respiratórias/imunologia , Receptores Toll-Like/imunologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Citocinas/farmacologia , Células Epiteliais/imunologia , Feminino , Flagelina/farmacologia , Ligantes , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/imunologia , Neutrófilos/imunologia , Pseudomonas aeruginosa , Sistema Respiratório/imunologia , Streptococcus pneumoniae
20.
Proc Am Thorac Soc ; 4(8): 618-25, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18073393

RESUMO

Although the outcome of respiratory infection alters with age, nutritional status, and immunologic competence, there is a growing body of evidence that we all develop a unique but subtle inflammatory profile. This uniqueness is determined by the sequence of infections or antigenic insults encountered that permanently mold our lungs through experience. This experience and learning process forms the basis of immunologic memory that is attributed to the acquired immune system. But what happens if the pathogen is not homologous to any preceding it? In the absence of cross-specific acquired immunity, one would expect a response similar to that of a subject who had never been infected with anything before. It is now clear that this is not the case. Prior inflammation in the respiratory tract alters immunity and pathology to subsequent infections even when they are antigenically distinct. Furthermore, the influence of the first infection is long lasting, not dependent on the presence of T and B cells, and effective against disparate pathogen combinations. We have used the term "innate imprinting" to explain this phenomenon, although innate education may be a closer description. This educational process, by sequential waves of infection, may be beneficial, as shown for successive viral infections, or significantly worse, as illustrated by the increased susceptibly to life-threatening bacterial pneumonia in patients infected with seasonal and pandemic influenza. We now examine what these long-term changes involve, the likely cell populations affected, and what this means to those studying inflammatory disorders in the lung.


Assuntos
Imunidade Inata , Infecções Respiratórias/imunologia , Animais , Anticorpos/imunologia , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Reações Cruzadas/imunologia , Células Epiteliais/citologia , Células Epiteliais/imunologia , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Sistema Linfático/imunologia , Regeneração , Mucosa Respiratória/fisiologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA