Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 96(8): e11105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39148173

RESUMO

Few studies apply geochemical concepts governing fluoride fate and transport in natural waters to geochemical conditions at contaminated industrial sites. This has negative implications for designing sampling and compliance monitoring programs and informing remediation decision-making. We compiled geochemical data for 566 groundwater samples from industrial waste streams associated with elevated fluoride and that span a range of geochemical conditions, including alkaline spent potliner, near-neutral pH coal combustion, and acidic gypsum stack impoundments. Like natural systems, elevated fluoride (hundreds to thousands of ppm) exists at the pH extremes and is generally tens of ppm at near-neutral pH conditions. Geochemical models identify pH-dependent fluoride complexation at low pH and carbonate stability at high pH as dominant processes controlling fluoride mobility. Limitations in available thermochemical, kinetic rate, and adsorption/desorption data and lack of complete analyses present uncertainties in quantitative models used to assess fluoride mobility at industrial sites. PRACTITIONER POINTS: Geochemical fundamentals of fluoride fate and transport in groundwater are communicated for environmental practitioners. Fluoride is a reactive constituent in groundwater, and factors that govern attenuation are identified. Geochemical models are useful for identifying fluoride attenuation processes, but quantitative use is limited by thermodynamic data uncertainties.


Assuntos
Fluoretos , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Fluoretos/química , Fluoretos/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Resíduos Industriais/análise , Monitoramento Ambiental , Concentração de Íons de Hidrogênio
3.
Environ Toxicol Chem ; 41(2): 396-409, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34813674

RESUMO

The derivation of protective values for aquatic life can be enhanced by the development and use of bioavailability models. Recent advances to metals bioavailability modeling are applicable to other analyte groups and should be widely considered. We conducted a meta-analysis of the available aquatic toxicity literature for fluoride to evaluate the utility of hardness, alkalinity, and chloride as toxicity-modifying factors (TMFs) in empirical bioavailability models of freshwater taxa. The resulting optimal multiple linear regression model predicting acute fluoride toxicity to the invertebrate Hyalella azteca included all three TMFs (observed vs. predicted 50% lethal concentrations, R2 = 0.88) and the optimal model predicting toxicity to the fish Oncorhynchus mykiss included alkalinity and hardness (R2 = 0.37). At >20 mg/L chloride, the preliminary final acute values for fluoride were within 1 order of magnitude and ranged from approximately 18.1 to 56.3 mg/L, depending on water chemistry. Sensitivity of H. azteca to low-chloride conditions increased model uncertainty when chloride was <20 mg/L. Because of limited toxicity data, chronic bioavailability models were not developed, and final chronic values were derived using an acute-to-chronic ratio (ACR) approach. Accounting for TMFs, the geometric mean ACR was 5.4 for fish and invertebrate taxa (n = 6). The present assessment highlights the need to expand bioavailability modeling to include inorganic anions, particularly fluoride, and demonstrates that existing promulgated protective values for fluoride are likely overly conservative. More toxicological studies are recommended to further refine multivariate empirical bioavailability models for inorganic anions. Environ Toxicol Chem 2022;41:396-409. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Disponibilidade Biológica , Cloretos , Fluoretos/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA