Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int J Fertil Steril ; 18(2): 180-184, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38368523

RESUMO

BACKGROUND: Infertile men with multiple morphological abnormalities of the sperm flagella (MMAF) phenotype exhibit mosaic sperm flagella abnormalities such as short, bent, coiled, and irregular flagella or absent flagella. Sperm flagellum has an ultrastructurally axonemal structure that contains a large number of proteins. A-Kinase Anchoring Protein 3 (AKAP3) is expressed in spermatozoa. It may function as a regulator of motility and the acrosome reaction. This study aimed to compare genetic changes in infertile men suffering MMAF phenotype with the control group. MATERIALS AND METHODS: In this case-control study, genetic variants of the AKAP3 gene were evaluated in 60 infertile men with MMAF phenotype and 40 fertile men, as control. As exon five of the AKAP3 gene encodes the functional domain of this protein, its genetic variants were studied. Therefore, polymerase chain reaction (PCR)-sequencing was undertaken on the DNA extracted from control and patients' blood samples. RESULTS: Sixty infertile men with MMAF phenotype and 40 normozoospermic men, as control, were enrolled in this study. Four haplotype variants 1378T>C (rs10774251), 1391C>G (rs11063266), 1437T>C (rs11063265), and 1573G>A (rs1990312) were detected in all patients and controls. On the other hand, a missense mutation 1499T>C (rs12366671) was observed in four patients with the homozygous form while seven patients carried the heterozygous form. No mutation was identified in the controls (P=0.04). The difference between the variation allele frequencies was assessed in the patient and control groups by the Fisher Exact Test. CONCLUSION: In the homozygous form, this mutation changed Isoleucine to Threonine. This alternation occurred inside the AKAP4 binding domain of the AKAP3 protein. The observed variants caused no significant deviation in the secondary structure of AKAP3 protein and probably its function in spermatozoa flagella. So, these variants cannot be considered as the causes of MMAF phenotype in the studied patients.

2.
Reprod Sci ; 31(5): 1256-1267, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38151654

RESUMO

Oocytes play a crucial role in repairing sperm DNA damage, which can affect the next generation; however, certain factors can impair this ability. This study examined whether oocyte vitrification, a widely used method for fertility preservation, negatively affects repair ability. Male DBA/2 mice (n = 28) were injected with 101.60 µmol/100 g body weight of tert-Butyl hydroperoxide (tBHP) for 14 days to induce sperm DNA damage. Histological changes, sperm functions, and DNA fragmentation were assessed using the TUNEL assay. Cumulus-oocyte-complexes (COCs) of superovulated female DBA/2 mice (n = 28) were vitrified using the Cryotop method. Fresh and vitrified oocytes were then fertilized by tBHP-treated and untreated sperms, and subsequent embryonic development was monitored. Additionally, the expression of Mre11a, Rad51, Brca1, and Xrcc4 was assessed in resulting zygotes and blastocysts using real-time PCR. The sperm tBHP treatment reduced differentiated spermatogenic cells in the testicular tissue, sperm concentration, and motility, while increasing DNA fragmentation (P < 0.05). The fertilization rate was decreased in the tBHP-treated sperm-vitrified oocyte group (P < 0.05), and the two-cell rate diminished in tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05). The four-cell to blastocyst rate decreased in the untreated sperm-vitrified oocyte and the tBHP-treated sperm-fresh and vitrified oocyte groups (P < 0.05), and the tBHP-treated sperm-vitrified oocyte groups had the lowest blastocyst rate. In zygotes, Brca1 was upregulated in the tBHP-treated sperm-vitrified oocyte group (P < 0.05). Also, in blastocysts, Rad51, Brca1, and Xrcc4 were significantly upregulated in the untreated sperm-vitrified oocytes group (P < 0.05). Damages to the oocyte due to vitrification can disrupt the repair of sperm DNA fragmentation and consequently impair the embryo development.


Assuntos
Fragmentação do DNA , Desenvolvimento Embrionário , Camundongos Endogâmicos DBA , Oócitos , Espermatozoides , Vitrificação , Animais , Masculino , Feminino , Desenvolvimento Embrionário/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Oócitos/metabolismo , Oócitos/efeitos dos fármacos , Camundongos , Criopreservação/métodos , Reparo do DNA , Blastocisto/metabolismo , Blastocisto/efeitos dos fármacos
3.
Front Genet ; 14: 1297173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842647
4.
Chem Biol Interact ; 351: 109687, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34653396

RESUMO

Because spermatogonia transmit genetic information across generations, their DNA must be protected from environmental damages, including exposure to zinc oxide nanoparticles (ZnO NPs), which are frequently used in modern technology. Here, we used an in vitro system enriched for spermatogonia and exposed them to 10 and 20 µg/ml ZnO NPs for one/seven days. We did not detect any significant cell death, chromosomal instability, or DNA fragmentation in the spermatogonia treated with the ZnO NPs following one-day treatment with 10 or 20 µg/ml ZnO NPs. However, ZnO NPs (both 10 and 20 µg/ml) induced chromosomal instability in the spermatogonia after seven days of treatment. Moreover, one-day exposure to these NPs induced reactive oxygen species (ROS) generation and upregulation of apoptotic pathway-related genes p53, Caspase3 and Il6, as an inflammatory factor. Taken together, our study provides preliminary evidence for possible damages induced by low concentrations of ZnO NPs in spermatogonia. We should pay increased attention when using these NPs because of the silent damages in spermatogonia that can be transmitted to the next generation and cause severe effects. However, more data and validation of these results are required to determine the extent of this concern.


Assuntos
Nanopartículas Metálicas/toxicidade , Espermatogônias/efeitos dos fármacos , Óxido de Zinco/toxicidade , Animais , Proteína Quinase CDC2/metabolismo , Caspase 3/metabolismo , Instabilidade Cromossômica/efeitos dos fármacos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
J Reprod Infertil ; 22(1): 57-64, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680886

RESUMO

BACKGROUND: Embryonic aneuploidy usually results in implantation failure and miscarriage. Considering significantly high frequency of sperm aneuploidy reported in oligoasthenoteratozoospermia (OAT) using fluorescence in situ hybridization (FISH) in limited number of chromosomes and lack of comprehensive chromosome screening (CCS) in OAT, the aim of this study was applying CCS in OAT sperm and comparison of the results with FISH findings. METHODS: Five OAT patients with normal blood karyotypes and history of implantation failure were included. The successfully amplified samples, each containing two sperm, were analyzed by array comparative genomic hybridization (aCGH). FISH was utilized mainly depending on the aneuploidies found by aCGH to assess their frequencies in total sperm population. RESULTS: In aCGH for 30 sperm, aneuploidy was found in 66% of samples. Following the study of 4300 sperm by FISH, an average of 55.46% aneuploidy was observed. No pregnancy was resulted with normal partners. CONCLUSION: Using aCGH, some abnormalities were observed that are not typically considered in sperm FISH studies. Despite small sample size of the comprehensive study, like other similar studies, the frequency of aneuploidies was considerable and similar to FISH. Aneuploidies revealed by aCGH at single sperm resolution were different from sperm population detected by FISH. Considering high frequency of aneuploidy in OATs sperm, preimplantation genetic testing for aneuploidy (PGT-A) can be used for in transfer of chromosomally normal embryos.

8.
Eur J Obstet Gynecol Reprod Biol ; 259: 100-104, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33639414

RESUMO

OBJECTIVE: Recurrent pregnancy loss (RPL) is a common infertility-related complication that affects approximately 1-3 % of women worldwide. Known causes of etiology are found in approximately half the cases but the other half remain unexplained. It is estimated that several thousands of genes contribute to reproductive success in mammals and the genetic causes of RPL cannot be fully addressed through targeted genetic tests. In recent years, massive parallel sequencing technologies has helped discovering many causal mutations in hereditary diseases such as RPL. STUDY DESIGN: Using whole-exome sequencing (WES), we studied a large multiplex consanguineous family with multiple cases of RPL and hydatidiform moles (HM). In addition, targeted Sanger sequencing was applied to 40 additional non-related individuals with RPL. RESULTS: The use of WES permitted to identify the pathogenic variant in KHDC3L (c.322_325delGACT) in related who experienced RPL with or without HM. Sanger sequencing confirmed the segregation of the mutation throughout the pedigree and permitted to establish this variant as the genetic cause responsible for RPL and HM in this family. CONCLUSION: KHDC3L is well established as a susceptibility gene for HM but we confirmed here that KHDC3L deleterious variants can also induce RPL. In addition, we observed a genotype-phenotype correlation, demonstrating that women with a truncating KHDC3L homozygous variant could not sustain a pregnancy and often had pregnancy losses mainly due to HM while those with the same heterozygous variant could have children but often endured RPL with no HM.


Assuntos
Aborto Habitual , Mola Hidatiforme , Aborto Habitual/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Criança , Feminino , Humanos , Mola Hidatiforme/genética , Mutação , Linhagem , Gravidez , Proteínas
9.
Cell J ; 22(4): 406-414, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32347033

RESUMO

OBJECTIVE: It is so difficult to formulate human growth hormone (hGH) in a solution with high stability and new drug delivery system (NDDs) due to physiochemical instability. The purpose of this study was to investigate the possibility of using Tris as a hGH stabilizer. MATERIALS AND METHODS: In this experimental study, the role of tris(hydroxymethyl)aminomethane (Tris) was evaluated as a hGH stabilizing agent in phosphate buffer, as a practical aqueous solution and a media to release NDDs. Highperformance liquid chromatography (HPLC) and enzyme-linked immune sorbent assay (ELISA) were applied to investigate the stability of hGH in solutions and dynamic light scattering (DLS) was used to measure the effect of Tris on the hydrodynamic size of hGH in aqueous solutions. Ultra violet (UV) spectrophotometry was used to check the hGH spectrum. In computational study, formation of ligand-protein complex of the Tris-hGH, and the intermolecular interactions between Tris and hGH were studied by molecular docking modeling. RESULTS: The results demonstrated that Tris at the optimum concentration, increases hGH stability in aqueous solutions. Also, molecular docking modeling confirmed that amino acid residues such as tyrosine (Tyr), proline (Pro), glutamic acid (Glu), aspartic acid (Asp), leucine (Leu), and phenylalanine (Phe) in hGH structure, were linked with Tris as a ligand. CONCLUSION: It seems that interactions between hGH and Tris are the most important reason for increment of the physicochemical stability of hGH in aqueous solutions containing Tris.

10.
Cell J ; 22(4): 467-475, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32347040

RESUMO

OBJECTIVE: In vitro fertilization (IVF) is one of the most efficient approaches within the context of assisted reproductive technology (ART) to treat infertility. High pregnancy rates have become the major index of successful IVF in clinical studies. It is not clear yet which factors are certainly responsible for IVF success, as various outcomes were obtained in different IVF centers with different settings. In this study, we aimed to address controversies in the interpretation of promising results of IVF with respect to preimplantation genetic screening (PGS). MATERIALS AND METHODS: In this retrospective case series study, we built a dataset containing data from 213 IVF patient candidates for PGS (654 embryos) with blastomere biopsy at day 3 and trophectoderm biopsy in day 5, referred to Royan Institute, Tehran, Iran from 2015 to 2018. Next, the data were analyzed to find influential factors affecting success rate of ART cycles. RESULTS: Data analyses showed that regardless of PGS indications (ART failures, recurrent miscarriage, chromosomal abnormalities, etc.), the pregnancy rate is influenced by maternal and embryonic factors such as the age of mother as well as quantity and quality of transferred embryos. Furthermore, genotyping of embryos using array comparative genomic hybridization (aCGH) depicted the highest rate of chromosomal aberrations for chromosomes 1, 16 and 19 while the lowest frequency for chromosomes 11 and 17. Similarly, we detected 463 genetically abnormal embryos by aCGH, among which only 41.9% could be detected by classical fluorescent in situ hybridization (FISH) method. CONCLUSION: This study not only highlighted the advantages of aCGH over the FISH method in detection of chromosomal abnormalities, but also emphasized the importance of genetic abnormality as an indication for determination of IVF success rate.

11.
Cytogenet Genome Res ; 160(11-12): 680-687, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33176309

RESUMO

One of the major reasons for implantation failure and spontaneous abortion is a high incidence of preimplantation chromosomal aneuploidy. Lapatinib simultaneously inhibits EGFR and HER2, leading to apoptosis. We hypothesized a higher sensitivity for aneuploid cells in preimplantation embryos to lapatinib based on reports of aneuploid cell lines being sensitive to some anticancer drugs. Late 2-cell mouse embryos were treated with lapatinib after determining a nontoxic dose. Morphologies were recorded 24, 48, and 60 hours later. The effect of lapatinib on the aneuploidy rate was evaluated by studying blastocyst cells using FISH. Although the rate of development to 8-cell and morula stage was higher in the control group (p < 0.05), there was no difference in development to the blastocyst stage at the same studied intervals between lapatinib-treated and control groups (p = 0.924). The mean number of cells in morula and blastocyst stages were not different between the groups (p = 0.331 and p = 0.175, respectively). The frequency of aneuploid cells and diploid embryos was, respectively, significantly lower and higher in lapatinib-treated embryos, (p < 0.001). Since lapatinib treatment reduced the aneuploidy rate without impact on the development of mouse preimplantation embryos to the blastocyst stage and number of total cells, lapatinib seems useful for prevention of preimplantation aneuploidy in in vitro fertilization.


Assuntos
Aneuploidia , Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Fertilização in vitro/métodos , Lapatinib/farmacologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Blastocisto/patologia , Masculino , Camundongos
12.
Int J Biochem Cell Biol ; 127: 105822, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771442

RESUMO

Extensive application of zinc oxide (ZnO) nanoparticles (NPs) in everyday life results in increased exposure to these NPs. Spermatogonial stem cells (SSCs) guarantee sperm production throughout the male reproductive life by providing a balance between self-renewal and differentiation. We used an in vitro platform to investigate the ZnO NPs effects on SSCs. We successfully synthesized ZnO NPs. In order to investigate these NPs, we isolated SSCs from mouse testes and cultured them in vitro. Our results confirmed the uptake of ZnO NPs by the cultured SSCs. We observed a dose- and time-dependent decrease in SSC viability. Both spherical and nanosheet ZnO NPs had the same cytotoxic effects on the SSCs, irrespective of their shapes. Moreover, we have shown that short time (one day) exposure of SSCs to a low concentration of ZnO NPs (10 µg/mL) promoted expressions of specific genes (Plzf, Gfr α1 and Bcl6b) for SSC self-renewal and differentiation genes (Vasa, Dazl, C-kit and Sycp3) expressed by spermatogonia during spermatogenesis. Our study provides the first insight into ZnO NPs function in SSCs and suggests a new function for ZnO NPs in the male reproductive system. We demonstrated that ZnO NPs might promote spermatogenesis via upregulation of gene expression related to SSC self-renewal and differentiation at low concentrations. Additional research should clarify the possible effect of ZnO NPs on the SSC genome and its effects on human SSCs.


Assuntos
Nanopartículas/administração & dosagem , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Espermatogônias/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Óxido de Zinco/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Nanopartículas/química , Espermatogônias/citologia , Espermatogônias/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo , Óxido de Zinco/química
13.
Eur J Obstet Gynecol Reprod Biol ; 252: 89-93, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32590167

RESUMO

Preimplantation genetic testing (PGT) routinely requires biopsy which is an invasive approach. The aim of this study was to examine a noninvasive approach for sexing of preimplantation embryos using polymerase chain reaction (PCR)/reverse transcriptase-PCR (RT-PCR) based on the presence of SRY DNA/RNA in the spent culture medium. Two groups were evaluated: in group 1, 40 embryos of routine PGT volunteers were cultured individually after biopsy and in group 2, 31 embryos were cultured individually until Day-5 post-fertilization. Each group was further divided into three subgroups: RNA extraction (RE), nucleic acid (NA) and DNase treated (DT). In the NA and DT subgroups, cDNA synthesis was performed directly on culture medium with or without DNase treatment in DT and NA subgroups, respectively. The results of sexing based on the PCR/RT-PCR in the culture medium, were compared with the results of sexing by fluorescence in situ hybridization (FISH) technique. In group 1, all samples were correctly diagnosed. In group 2, five female samples were misdiagnosed. Test's sensitivity, specificity and accuracy were 100 %, 94.44 % and 96.88 %, in RE, 100 %, 81.82 % and 93.55 % in DT and 100 %, 71.43 % and 85.71 % in NA, respectively. Preimplantation sexing without embryo biopsy, in the spent embryo culture media using RNA amplification based methods including RE and DT seem to be more reliable while nucleic acid based method, NA, led to the highest misdiagnoses probably due to DNA contamination. Since all male samples were correctly diagnosed in all subgroups of this preliminary study, preimplantation noninvasive sexing on culture medium seems feasible, however all sources of nucleic acid contamination must be carefully avoided.


Assuntos
Blastocisto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise para Determinação do Sexo , Meios de Cultura , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Reação em Cadeia da Polimerase , Gravidez
14.
Cell J ; 22(2): 133-139, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31721526

RESUMO

Specific developmental characteristics of the chicken make it an attractive model for the generation of transgenic organisms. Chicken possess a strong potential for recombinant protein production and can be used as a powerful bioreactor to produce pharmaceutical and nutritional proteins. Several transgenic chickens have been generated during the last two decades via viral and non-viral transfection. Culturing chicken primordial germ cells (PGCs) and their ability for germline transmission ushered in a new stage in this regard. With the advent of CRISPR/Cas9 system, a new phase of studies for manipulating genomes has begun. It is feasible to integrate a desired gene in a predetermined position of the genome using CRISPR/Cas9 system. In this review, we discuss the new approaches and technologies that can be applied to generate a transgenic chicken with regards to recombinant protein productions.

15.
Gynecol Obstet Invest ; 85(1): 94-99, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31743930

RESUMO

AIM: The objective of the present study was to investigate the development of mouse embryos and the chromosomal status after the pre-implantation treatment with paclitaxel (Taxol) based on the reports that indicate Taxol improves the developmental potential of vitrified human and mouse oocytes. METHODS: Outbred female mice were superovulated and in vitro fertilization (IVF) was carried out using sperms from the same strain. Two-cell stage mouse embryos were cultured in the presence of Taxol for 24 h. After the determination of a non-toxic dose of Taxol, embryo development in control and Taxol-treated groups was compared during 3.5 days post-IVF. The aneuploidy rate of embryos was assessed by fluorescence in situ hybridization for chromosomes 2 and 11. RESULTS: Development to morula and blastocyst stages was considerably enhanced following the addition of Taxol 0.01 µM compared to a similar situation in controls (p < 0.0001). Moreover, the degeneration rate was decreased following treatment with this concentration of Taxol (p < 0.01). The rate of aneuploidy in embryos and individual blastomeres did not vary between groups (p = 0.518 and 0.810 respectively). CONCLUSION: Pre-implantation treatment with Taxol 0.01 µM had a positive effect on the development to morula/blastocyst stages and decreased the degeneration rate without affecting the aneuploidy rate of chromosomes 2 and 11.


Assuntos
Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Paclitaxel/farmacologia , Aneuploidia , Animais , Blastômeros/efeitos dos fármacos , Implantação do Embrião , Feminino , Fertilização in vitro , Hibridização in Situ Fluorescente , Camundongos , Oócitos
16.
Curr Urol ; 13(1): 46-50, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31579209

RESUMO

BACKGROUND: EIF1AY is one of the genes essential for normal spermatogenesis and is located in azoospermic factors region. OBJECTIVE: The present study was designed to investigate the EIF1AY gene nucleotide variations, and correlate it with spermatogenic maturation arrest and azoospermia in Iranian population. METHODS: A total number of 30 Iranian idiopathic non-obstructive azoospermic patients were selected as case group and 30 fertile men served as a control group who had at least 1 child. Nucleotide variation was analyzed in exon 3 and exon 5 in EIF1AY gene of both groups. DNA extraction from peripheral blood samples of selected individuals was done followed by amplification by PCR and sequencing with Sangar method. RESULTS: Totally 3 single nucleotide variations were identified: one in the intronic region of exon 3, next one in non-coding transcript exon variant (rs13447352) and the third one in the exonic region of exon 5, all were registered in NCBI-Gene database. CONCLUSION: There was no statistically significant difference in the incidence of nucleotide variation between 2 study populations (p > 0.05). Further studies are required to specify the effects of Y: T20588295G variation on modification of protein structure, as well as the expression pattern of the gene and its association with azoospermia.

17.
Reprod Biomed Online ; 39(4): 649-657, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31474436

RESUMO

RESEARCH QUESTION: Human DEFB126 is an important component of the glycocalyx of human spermatozoa. Beta-defensins play a primary role in male infertility due to their involvement in maturation and capacitation of spermatozoa. A 2-nt deletion of DEFB126 affects sperm function and so this study investigated the possible association between DEFB126 variants and its protein expression on medically assisted reproduction (MAR) technique outcome in Iranian infertile males. DESIGN: The presence of a 2-nt deletion of DEFB126, and its protein expression in spermatozoa, were investigated by standard polymerase chain reaction (PCR) sequencing and immunocytochemistry, respectively. MAR technique outcome according to clinical pregnancy rates was assessed in 277 Iranian males with unexplained infertility, including 139 patients who underwent intrauterine insemination (IUI) and 103 patients who underwent IVF/intracytoplasmic sperm injection (ICSI), as well as 35 infertile males who declined to use any MAR treatment. As the control group, 100 fertile males with a normal spermiogram were enrolled. RESULTS: The 2-nt deletion of DEFB126 was significantly higher in infertile patients than controls (P ≤ 0.05). The presence of this deletion resulted in significantly lower clinical pregnancy rates following IUI (P ≤ 0.05); however, there were no differences in IVF/ICSI outcomes according to genotype. The protein expression in del/del males was also remarkably lower than that of the other genotypes. CONCLUSIONS: This sequence variation of DEFB126 may impair male reproductive function and can be related to male infertility. Interestingly, males with the del/del genotype have a normal spermiogram; however, their spermatozoa are evidently functionally impaired, which can affect IUI treatment outcome, but not treatment by IVF/ICSI.


Assuntos
Infertilidade Masculina/genética , Infertilidade Masculina/terapia , Polimorfismo de Nucleotídeo Único , Técnicas de Reprodução Assistida , beta-Defensinas/genética , Adulto , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Infertilidade Masculina/epidemiologia , Masculino , Pessoa de Meia-Idade , Gravidez , Resultado da Gravidez/epidemiologia , Técnicas de Reprodução Assistida/estatística & dados numéricos , Resultado do Tratamento
18.
Clin Genet ; 96(5): 394-401, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31292949

RESUMO

Multiple morphological anomalies of the sperm flagella (MMAF syndrome) is a severe male infertility phenotype which has so far been formally linked to the presence of biallelic mutations in nine genes mainly coding for axonemal proteins overexpressed in the sperm flagellum. Homozygous mutations in QRICH2, a gene coding for a protein known to be required for stabilizing proteins involved in sperm flagellum biogenesis, have recently been identified in MMAF patients from two Chinese consanguineous families. Here, in order to better assess the contribution of QRICH2 in the etiology of the MMAF phenotype, we analyzed all QRICH2 variants from whole exome sequencing data of a cohort of 167 MMAF-affected subjects originating from North Africa, Iran, and Europe. We identified a total of 14 potentially deleterious variants in 18 unrelated individuals. Two unrelated subjects, representing 1% of the cohort, carried a homozygous loss-of-function variant: c.3501C>G [p.Tyr1167Ter] and c.4614C>G [p.Tyr1538Ter], thus confirming the implication of QRICH2 in the MMAF phenotype and human male infertility. Sixteen MMAF patients (9.6%) carried a heterozygous QRICH2 potentially deleterious variant. This rate was comparable to what was observed in a control group (15.5%) suggesting that the presence of QRICH2 heterozygous variants is not associated with MMAF syndrome.


Assuntos
Anormalidades Múltiplas/genética , Infertilidade Masculina/genética , Proteínas dos Microtúbulos/genética , Anormalidades Múltiplas/patologia , África do Norte/epidemiologia , Axonema , Estudos de Coortes , Proteínas do Citoesqueleto , Europa (Continente)/epidemiologia , Homozigoto , Humanos , Infertilidade Masculina/patologia , Irã (Geográfico)/epidemiologia , Masculino , Mutação/genética , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/patologia , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/patologia
19.
J Hum Genet ; 64(10): 1023-1032, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31320686

RESUMO

Obstructive azoospermia (OA), defined as an obstruction in any region of the male genital tract, accounts for 40% of all azoospermia cases. Of all OA cases, ~30% are thought to have a genetic origin, however, hitherto, the underlying genetic etiology of the majority of these cases remain unknown. To address this, we took a family-based whole-exome sequencing approach to identify causal variants of OA in a multiplex family with epidydimal obstruction. A novel gain-of-function missense variant in CLDN2 (c.481G>C; p.Gly161Arg) was found to co-segregate with the phenotype, consistent with the X-linked inheritance pattern observed in the pedigree. To assess the pathogenicity of this variant, the wild and mutant protein structures were modeled and their potential for strand formation in multimeric form was assessed and compared. The results showed that dimeric and tetrameric arrangements of Claudin-2 were not only reduced, but were also significantly altered by this single residue change. We, therefore, envisage that this amino acid change likely forms a polymeric discontinuous strand, which may lead to the disruption of tight junctions among epithelial cells. This missense variant is thus likely to be responsible for the disruption of the blood-epididymis barrier, causing dislodged epithelial cells to clog the genital tract, hence causing OA. This study not only sheds light on the underlying pathobiology of OA, but also provides a basis for more efficient diagnosis in the clinical setting.


Assuntos
Azoospermia/genética , Claudinas/genética , Mutação de Sentido Incorreto , Azoospermia/diagnóstico por imagem , Azoospermia/etiologia , Azoospermia/patologia , Claudinas/química , Família , Humanos , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Sequenciamento do Exoma
20.
Cell J ; 21(3): 253-258, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31210430

RESUMO

OBJECTIVE: The presence of a sex related metabolic difference in glucose utilization and, on the other hand, different developmental kinetic rates in human preimplantation embryos, has been previously observed, however, the correlation between these two events is unknown. Oxidative stress (OS) induced by higher glucose consumption appears to be a possible cause for the delayed development rate in female embryos. We examined the correlation between glucose consumption and total antioxidant capacity (TAC) concentration in individual embryo culture media for both male and female embryos. MATERIALS AND METHODS: In this cross-sectional study, we evaluated high quality embryos from 51 patients that underwent intracytoplasmic sperm injection (ICSI) and preimplantation genetic diagnosis (PGD) at the Royan Institute between December 2014 and September 2017. The embryos were individually cultured in G-2TM medium droplets at days 3-5 or 48 hours post PGD. We analysed the spent culture media following embryo transfer for total antioxidant capacity (TAC) and any remaining glucose concentrations through fluorometric measurement by chemiluminecence system which indirectly was used for measurement of glucose consumed by embryos. RESULTS: The results showed that female embryos consumed more glucose which was associated with decreased TAC concentration in their culture medium compared to male embryos. The mean of glucose concentration consumed by the female embryos (30.7 ± 4.7 pmol/embryo/hour) was significantly higher than that of the male embryos (25.3 ± 3.3 pmol/embryo/hour) (P<0.001). There were significantly lower levels of TAC in the surrounding culture medium of female embryos (22.60 ± 0.19 nmol/µl) compared with male embryos (24.74 ± 0.27 nmol/µl, P<0.01). CONCLUSION: This finding highlighted the utilization of sex dependent metabolic diversity between preimplantation embryos for non-invasive sex diagnosis and suggests the TAC concentration as a potential noninvasive biomarker for prediction of sex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA