RESUMO
OBJECTIVE: This study aimed to investigate scalp gamma-band oscillations (GBOs) induced by mechanical stimuli activating skin nociceptors before and after the induction of mechanical hypersensitivity using high-frequency electrical stimulation (HFS) of the skin. METHODS: In twenty healthy volunteers, we recorded the electroencephalogram during robot-controlled mechanical pinprick stimulation (512 mN) applied at the right ventral forearm before and after HFS. RESULTS: HFS induced a significant increase in mechanical pinprick sensitivity, but this increased pinprick sensitivity was, at the group level, not accompanied by a significant increase in GBOs. Visual inspection of the individual data revealed that possible GBOs were present in eight out of twenty participants (40%) and the frequency of these GBOs varied substantially across participants. CONCLUSIONS: Based on the low number of participants showing GBOs we question the (clinical) utility of mechanically-induced GBOs as an electrophysiological marker of pinprick hypersensitivity in humans. SIGNIFICANCE: Mechanical pinprick-induced scalp GBOs are not useful for evaluating mechanical pinprick hypersensitivity in humans.
Assuntos
Hiperalgesia , Pele , Humanos , Estimulação Elétrica , Nociceptores/fisiologia , AntebraçoRESUMO
The aim of the present study was to compare the efficacy of burst-like conditioning electrical stimulation vs. continuous stimulation of cutaneous nociceptors for inducing increased pinprick sensitivity in the surrounding unstimulated skin (a phenomenon referred to as secondary hyperalgesia). In a first experiment (n = 30), we compared the increase in mechanical pinprick sensitivity induced by 50-Hz burst-like stimulation (n = 15) vs. 5-Hz continuous stimulation (n = 15) while maintaining constant the total number of stimuli and the total duration of stimulation. We found a significantly greater increase in mechanical pinprick sensitivity in the surrounding unstimulated skin after 50-Hz burst-like stimulation compared with 5-Hz continuous stimulation (P = 0.013, Cohen's d = 0.970). Importantly, to control for the different frequency of stimulation, we compared in a second experiment (n = 40) 5-Hz continuous stimulation (n = 20) vs. 5-Hz burst-like stimulation (n = 20), this time while keeping the total number of stimuli as well as the frequency of stimulation identical. Again, we found a significantly greater increase in pinprick sensitivity after 5-Hz burst-like stimulation compared with 5-Hz continuous stimulation (P = 0.009, Cohen's d = 0.868). To conclude, our data indicate that burst-like conditioning electrical stimulation is more efficacious than continuous stimulation for inducing secondary hyperalgesia.NEW & NOTEWORTHY Burst-like electrical conditioning stimulation of cutaneous nociceptors is more efficacious than continuous stimulation for inducing heterosynaptic facilitation of mechanical nociceptive input in humans.
Assuntos
Hiperalgesia/fisiopatologia , Nociceptividade/fisiologia , Nociceptores/fisiologia , Percepção do Tato/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Adulto JovemRESUMO
High-frequency burstlike electrical conditioning stimulation (HFS) applied to human skin induces an increase in mechanical pinprick sensitivity of the surrounding unconditioned skin (a phenomenon known as secondary hyperalgesia). The present study assessed the effect of frequency of conditioning stimulation on the development of this increased pinprick sensitivity in humans. In a first experiment, we compared the increase in pinprick sensitivity induced by HFS, using monophasic non-charge-compensated pulses and biphasic charge-compensated pulses. High-frequency stimulation, traditionally delivered with non-charge-compensated square-wave pulses, may induce a cumulative depolarization of primary afferents and/or changes in pH at the electrode-tissue interface due to the accumulation of a net residue charge after each pulse. Both could contribute to the development of the increased pinprick sensitivity in a frequency-dependent fashion. We found no significant difference in the increase in pinprick sensitivity between HFS delivered with charge-compensated and non-charge-compensated pulses, indicating that the possible contribution of charge accumulation when non-charge-compensated pulses are used is negligible. In a second experiment, we assessed the effect of different frequencies of conditioning stimulation (5, 20, 42, and 100 Hz) using charge-compensated pulses on the development of increased pinprick sensitivity. The maximal increase in pinprick sensitivity was observed at intermediate frequencies of stimulation (20 and 42 Hz). It is hypothesized that the stronger increase in pinprick sensitivity at intermediate frequencies may be related to the stronger release of substance P and/or neurokinin-1 receptor activation expressed at lamina I neurons after C-fiber stimulation.NEW & NOTEWORTHY Burstlike electrical conditioning stimulation applied to human skin induces an increase in pinprick sensitivity in the surrounding unconditioned skin (a phenomenon referred to as secondary hyperalgesia). Here we show that the development of the increase in pinprick sensitivity is dependent on the frequency of the burstlike electrical conditioning stimulation.
Assuntos
Condicionamento Psicológico/fisiologia , Hiperalgesia/fisiopatologia , Nociceptividade/fisiologia , Pele/fisiopatologia , Percepção do Tato/fisiologia , Adolescente , Adulto , Estimulação Elétrica , Feminino , Humanos , Masculino , Adulto JovemRESUMO
The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.