Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 279: 116845, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39265249

RESUMO

A growing body of evidence points to the existence of a crosstalk between the endovanilloid (EV)- and the endocannabinoid (EC) systems, leading to the concept of a single system based on a shared set of endogenous ligands and regulation mechanisms. The EV/EC system encompasses the ion channel TRPV1, the G protein coupled receptors CB1 and CB2, their endogenous ligands and the enzymes for biosynthesis and inactivation. Disorders in which the EV/EC interaction is involved are inflammation, pain, neurodegenerative diseases and disorders of bones and skin. In the present paper, with the aim of targeting the EV/EC system, the Passerini reaction is used in a diversity-oriented approach to generate a series of α-acyloxycarboxamides bearing different substructures that resemble endogenous ligands. Compounds have been screened for activity on TRPV1, CB1 and CB2 and metabolic stability in skin cells, liver subcellular fractions and plasma. This protocol allowed to generate agents characterized by a diverse activity on TRPV1, CB1 and CB2, as well as heterogeneous metabolic stability that could allow different routes of administration, from soft drugs for topical treatment of skin diseases to hard drugs for systemic use in inflammation and pain. Compared to natural mediators, these compounds have a better drug-likeness. Among them, 41 stands out as an agonist endowed with a well-balanced activity on both TRPV1 and CB2, high selectivity over TRPM8, TRPA1 and CB1, metabolic stability and synthetic accessibility.

2.
J Med Chem ; 65(21): 14481-14526, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36263945

RESUMO

Targeting the protein-protein interaction (PPI) between the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its repressor, Kelch-like ECH-associated protein 1 (Keap1), constitutes a promising strategy for treating diseases involving oxidative stress and inflammation. Here, a fragment-based drug discovery (FBDD) campaign resulted in novel, high-affinity (Ki = 280 nM), and cell-active noncovalent small-molecule Keap1-Nrf2 PPI inhibitors. We screened 2500 fragments using orthogonal assays─fluorescence polarization (FP), thermal shift assay (TSA), and surface plasmon resonance (SPR)─and validated the hits by saturation transfer difference (STD) NMR, leading to 28 high-priority hits. Thirteen co-structures showed fragments binding mainly in the P4 and P5 subpockets of Keap1's Kelch domain, and three fluorenone-based fragments featuring a novel binding mode were optimized by structure-based drug discovery. We thereby disclose several fragment hits, including their binding modes, and show how FBDD can be performed to find new small-molecule Keap1-Nrf2 PPI inhibitors.


Assuntos
Descoberta de Drogas , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Descoberta de Drogas/métodos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA