Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37509196

RESUMO

Glaucoma is a complex, multifactorial optic neuropathy mainly characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, resulting in a decline of visual function. The pathogenic molecular mechanism of glaucoma is still not well understood, and therapeutic strategies specifically addressing the neurodegenerative component of this ocular disease are urgently needed. Novel immunotherapeutics might overcome this problem by targeting specific molecular structures in the retina and providing direct neuroprotection via different modes of action. Within the scope of this research, the present study showed for the first time beneficial effects of the synthetic CDR1 peptide SCTGTSSDVGGYNYVSWYQ on the viability of RGCs ex vivo in a concentration-dependent manner compared to untreated control explants (CTRL, 50 µg/mL: p < 0.05 and 100 µg/mL: p < 0.001). Thereby, this specific peptide was identified first as a potential biomarker candidate in the serum of glaucoma patients and was significantly lower expressed in systemic IgG molecules compared to healthy control subjects. Furthermore, MS-based co-immunoprecipitation experiments confirmed the specific interaction of synthetic CDR1 with retinal acidic leucine-rich nuclear phosphoprotein 32A (ANP32A; p < 0.001 and log2 fold change > 3), which is a highly expressed protein in neurological tissues with multifactorial biological functions. In silico binding prediction analysis revealed the N-terminal leucine-rich repeat (LRR) domain of ANP32A as a significant binding site for synthetic CDR1, which was previously reported as an important docking site for protein-protein interactions (PPI). In accordance with these findings, quantitative proteomic analysis of the retinae ± CDR1 treatment resulted in the identification of 25 protein markers, which were significantly differentially distributed between both experimental groups (CTRL and CDR1, p < 0.05). Particularly, acetyl-CoA biosynthesis I-related enzymes (e.g., DLAT and PDHA1), as well as cytoskeleton-regulating proteins (e.g., MSN), were highly expressed by synthetic CDR1 treatment in the retina; on the contrary, direct ANP32A-interacting proteins (e.g., NME1 and PPP2R4), as well as neurodegenerative-related markers (e.g., CEND1), were identified with significant lower abundancy in the CDR1-treated retinae compared to CTRL. Furthermore, retinal protein phosphorylation and histone acetylation were also affected by synthetic CDR1, which are both partially controlled by ANP32A. In conclusion, the synthetic CDR1 peptide provides a great translational potential for the treatment of glaucoma in the future by eliciting its neuroprotective mechanism via specific interaction with ANP32A's N terminal LRR domain.


Assuntos
Glaucoma , Proteômica , Humanos , Leucina/metabolismo , Glaucoma/metabolismo , Células Ganglionares da Retina/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Front Med (Lausanne) ; 9: 993351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313990

RESUMO

Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs) as well as their axons leading to irreversible loss of sight. Medical management of the intraocular pressure (IOP) still represents the gold standard in glaucoma therapy, which only manages a single risk factor and does not directly address the neurodegenerative component of this eye disease. Recently, our group showed that antibody-derived immunopeptides (encoding complementarity-determining regions, CDRs) provide attractive glaucoma medication candidates and directly interfere its pathogenic mechanisms by different modes of action. In accordance with these findings, the present study showed the synthetic complementary-determining region 2 (CDR2) peptide (INSDGSSTSYADSVK) significantly increased RGC viability in vitro in a concentration-dependent manner (p < 0.05 using a CDR2 concentration of 50 µg/mL). Employing state-of the-art immunoprecipitation experiments, we confirmed that synthetic CDR2 exhibited a high affinity toward the retinal target protein histone H3.1 (HIST1H3A) (p < 0.001 and log2-fold change > 3). Furthermore, molecular dynamics (MD) simulations along with virtual docking analyses predicted potential CDR2-specific binding regions of HIST1H3A, which might represent essential post-translational modification (PTM) sites for epigenetic regulations. Quantitative mass spectrometry (MS) analysis of retinas demonstrated 39 proteins significantly affected by CDR2 treatment (p < 0.05). An up-regulation of proteins involved in the energy production (e.g., ATP5F1B and MT-CO2) as well as the regulatory ubiquitin proteasome system (e.g., PSMC5) was induced by the synthetic CDR2 peptide. On the other hand, CDR2 reduced metabolic key enzymes (e.g., DDAH1 and MAOB) as well as ER stress-related proteins (e.g., SEC22B and VCP) and these data were partially confirmed by microarray technology. Our outcome measurements indicate that specific protein-peptide interactions influence the regulatory epigenetic function of HIST1H3A promoting the neuroprotective mechanism on RGCs in vitro. In addition to IOP management, such synthetic peptides as CDR2 might serve as a synergistic immunotherapy for glaucoma in the future.

3.
J Biomol Struct Dyn ; 40(23): 12841-12847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34570679

RESUMO

The folding-unfolding of a 16 residue polypeptide, a ß-hairpin in B1 domain of protein G is investigated here to account for the factors assisting the extra stability of the polypeptide in the presence of an explicit solvent and even when a denaturant like urea is present in the medium. It is observed here that the backbone H-bond network well defines the folded state and is even capable of forming the folded state, but it is not the only criteria for making a stable ß-hairpin fold. Factors such as the side chain H-bonds and the alignment of the certain hydrophobic group side chains play a prominent role in preserving the ß-hairpin structure and thus providing an extra stability to the hairpin architecture. It is also affirmed that the mentioned hydrophobic groups side chain interactions are very crucial in holding the ß-hairpin together and without which the hairpin collapses completely. We also confirm that the denaturant urea acts on the GB1-hairpin backbone H-bonds and in the presence of strong hydrophobic interactions with a consistent side chain H-bonding network, the denaturation being comparatively a slower process with respect to the protein devoid of the side chain interactions.Communicated by Ramaswamy H. Sarma.


Assuntos
Peptídeos , Dobramento de Proteína , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Peptídeos/química , Ureia , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA