Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 124(3): 359-372, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649127

RESUMO

Excitotoxicity, depletion of energy metabolites, and ionic imbalance are the major factors involved in neurodegeneration mediated through excitatory amino acid transporter-2 (EAAT-2) dysfunction in ischemic insult. Recent studies have revealed that ceftriaxone expresses EAAT-2 via nuclear transcription factor kappa-B (NF-kB) signaling pathway, stimulation of EAAT-2 expression in the ischemic, and excitotoxic conditions that could provide potential benefits to control neurodegeneration. In this study, we have predicted the in silico model for interaction between NF-kB and EAAT-2 promoter region to rule out the conformational changes for the expression of EAAT-2 protein. Using homology-built model of NF-kB, we identified ceftriaxone-induced conformational changes in gene locus -272 of DNA where NF-kB binding with EAAT-2 promoter region through protein-DNA docking calculation. The interaction profile and conformational dynamics occurred between ceftriaxone predocked and postdocked conformations of NF-kB with DNA employing HADDOCK 2.2 web server followed by 250 ns long all atom explicit solvent molecular dynamics simulations. Both the protein and DNA exhibited modest conformational changes with respect to HADDOCK score, energy terms (desolvation energy [Edesolv ]), van der waal energy (Evdw ), electrostatic energy (Eelec ), restraints energy (Eair ), buried surface area, root mean square deviation, RMSF, radius of gyration, total hydrogen bonds when ceftriaxone pre- and postdocked NF-kB conformations were bound to DNA. Hence, the conformational changes in the C-terminal domain could be the reason for EAAT-2 expression through ceftriaxone specific binding pocket of -272 of DNA.


Assuntos
Ceftriaxona , NF-kappa B , Ceftriaxona/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Neuroglia/metabolismo , Regiões Promotoras Genéticas
2.
Environ Sci Pollut Res Int ; 25(11): 10688-10700, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29392607

RESUMO

The present work deals with collection, handling, utilization, and management of the waste flowers that are coming out of the temples in Coimbatore District, Tamilnadu, India. An attempt has been made to provide a current situation and complete analysis of temple waste flowers (TWFs) with suggestions and recommendations. As a part of Clean India, Clean and Green Kovai (Green Coimbatore) mission, this paper gives an idea to reduce the volume of temple waste flowers by converting into activated carbon by direct pyrolysis process and chemical activation with sulfuric acid and phosphoric acid process, respectively. The products were analyzed and compared based on the results of physicochemical parameters including pH, conductivity, moisture content, ash content, volatile content, fixed carbon, bulk density, porosity, specific gravity, water soluble matter, acid soluble matter, iodine number, methylene blue number, yield, and Brunauer-Emmett-Teller (SBET) surface area. The structure, surface morphology, and chemical compositions of carbon were determined by field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDS), respectively. From the comparison of results, the activated carbon produced from temple waste flowers by direct pyrolysis process is fairly better due to low moisture content, low ash content, better yield, and higher surface area.


Assuntos
Carbono/química , Azul de Metileno/química , Ácidos Fosfóricos/química , Adsorção , Flores , Índia , Microscopia Eletrônica de Varredura , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA