RESUMO
Probiotics are viable microorganisms that confer health benefits when administered to the host in adequate amounts. Over the past decade, there has been a growing demand for the use of oral and topical probiotics in several inflammatory conditions such as atopic dermatitis, psoriasis, acne vulgaris, etc., although their role in a few areas still remains controversial. The objective of this article is to shed light on understanding the origin and implications of microbiota in the pathophysiology of these dermatological conditions and the effect of probiotic usage. We have conducted a comprehensive search of the literature across multiple databases (PubMed, EMBASE, MEDLINE, and Google Scholar) on the role of probiotics in dermatological disorders. Commensal microbes of the skin and gastrointestinal tract play an important role in both health and disease. Increased use of probiotics has asserted a good safety profile, especially in this era of antibiotic resistance. With the advent of new products in the market, the indications, mechanism of action, efficacy, and safety profile of these agents need to be validated. Further studies are required. Oral and topical probiotics may be tried as a treatment or prevention modality in cutaneous inflammatory disorders, thus facilitating decreased requirement for topical or systemic steroids and antimicrobial agents. Tempering microbiota with probiotics is a safe and well-tolerated approach in this era of antimicrobial resistance.
RESUMO
The study identified the innate enzymatic potential (amylase) of the PHB producing strain B.thuringiensis IAM 12077 and explored the same for cost-effective production of PHB using agrowastes, eliminating the need for pretreatment (acid hydrolysis and/or commercial enzyme). Comparative polyhydroxyalkanoate (PHA) production by B. thuringiensis IAM 12077 in biphasic growth conditions using glucose and starch showed appreciable levels of growth (5.7 and 6.8 g/L) and PHA production (58.5 and 41.5%) with a PHA yield of 3.3 and 2.8 g/L, respectively. Nitrogen deficiency supported maximum PHA yield (2.46 g/L) and accumulation (53.3%). Maximum growth (3.6 g/L), PHB yield (2.6 g/L) and PHA accumulation (72.8%) was obtained with C:N ratio of 8:1 using starch as the carbon source (10 g/L). Nine substrates (agro and food wastes) viz. rice husk, wheat bran, ragi husk, jowar husk, jackfruit seed powder, mango peel, potato peel, bagasse and straw were subjected to two treatments- acid hydrolysis and hydrolysis by innate enzymes, and the reducing sugars released thereby were utilized for polymer production. All the substrates tested supported comparable PHB production with acid hydrolysis (0.96 g/L-8.03 g/L) and enzyme hydrolysis (0.96 g/L -5.16 g/L). Mango peel yielded the highest PHB (4.03 g/L; 51.3%), followed by jackfruit seed powder (3.93 g/L; 29.32%). Varied levels of amylase activity (0.25U-10U) in all the substrates suggested the enzymatic hydrolysis of agrowastes.
RESUMO
BACKGROUND: The RBCs storage lesion is most carefully viewed as the sum of all the changes in RBCs occurring during the course of storage and that limit their survival. MATERIALS AND METHODS: Erythrocytes were isolated from stored blood at regular intervals. Oxidative stress markers were analyzed to determine the changes during the storage. RESULTS: Antioxidant enzymes--(SOD and CAT), and SH showed insignificant variation whereas hemolysis, MDA and AOPP showed significant variations. CONCLUSION: The oxidative stress has not successfully overridden the protection offered by the endogenous antioxidant system. Prolonged storage may result in the onset of erythrocyte deterioration. This clearly indicates that the erythrocytes are capable of attenuating ROS with 2 weeks of storage.