Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
2.
Cell Biochem Funct ; 42(4): e4037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736204

RESUMO

Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.


Assuntos
Molécula 1 de Adesão Intercelular , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Complicações do Diabetes/metabolismo , Estresse Oxidativo , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Inflamação/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/etiologia
4.
Curr Med Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818917

RESUMO

"Diabetes mellitus" is a chronic metabolic disorder manifested by elevated blood glucose levels, primarily due to insufficient insulin production or resistance to insulin. Long-term diabetes results in persistent complications like retinopathy, cardiomyopathy, nephropathy, and neuropathy, causing significant health risks. The most alarming microvascular consequence allied with diabetes is "diabetic retinopathy," distinguished by the proliferation of anomalous blood vessels in the eye, mainly in the retina, resulting in visual impairment, diabetic macular edema, and retinal detachment if left untreated. According to estimates, 27.0% of people with diabetes worldwide have retinopathy, which leads to 0.4 million blindness cases. It is believed that mitochondrial damage and the production of inflammatory mediators are the early indicators of diabetic retinopathy before any histological changes occur in the retina. Moreover, it is evident that augmented oxidative stress in the retina further initiates the NF-κB/MMP-9 downstream signaling pathway. Interestingly, these downstream regulators, Nuclear Factor Kappa B [NF- kB] and matrix metalloproteinases 9 [MMP-9], have been recognized as important regulators of the inception and advancement of diabetic retinopathy. This diabetes and oxidative stress-induced MMP-9 are believed to regulate various cellular functions, including angiogenesis and apoptosis, causing blood-retinal barrier breakdown and tight junction protein degradation that further leads to diabetic retinopathy. Thus, there is an emergency need for the treatment of diabetic retinopathy. Emerging treatment options include anti-VEGF, laser treatment, and eye surgery, but these have certain limitations. This comprehensive review explores the mechanisms of MMP-9 and NF-kB involvement in diabetic retinopathy and bioflavonoids' therapeutic potential and mechanisms of action in inhibiting MMP-9 activity and suppressing NF-kB-mediated inflammation. Clinical evidence supporting the use of bioflavonoids in mitigating diabetic complications and future perspectives are also examined.

5.
Curr Drug Saf ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676478

RESUMO

Depression, a pervasive mental health disorder, affects millions worldwide, necessitating the widespread use of synthetic anti-depressant medications. While these pharmaceutical interventions have demonstrated efficacy in alleviating depressive symptoms, they are not without their associated side effects. This review provides a comprehensive overview of the side effects of synthetic anti-depressants, aiming to enhance the understanding of their clinical implications. Common side effects explored include gastrointestinal disturbances, sexual dysfunction, insomnia, weight gain, and cognitive impairments. Additionally, this review delves into less frequent but potentially severe adverse events, such as serotonin syndrome, hyponatremia, and cardiac complications associated with specific classes of synthetic anti-depressants. Moreover, the review examines the interplay between side effects and treatment adherence, emphasizing the importance of monitoring and managing these effects in clinical practice. It also discusses strategies to mitigate side effects, including dose adjustments, combination therapy, and alternative treatment approaches. In conclusion, this comprehensive review sheds light on the multifaceted landscape of side effects associated with synthetic anti-depressants. By providing clinicians with a nuanced understanding of these effects, it aims to facilitate informed decision-making, personalized treatment plans, and improved patient outcomes in managing depression.

6.
Indian J Pediatr ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536651

RESUMO

This study aims to analyze the prevalence and patterns of sensory processing deficits (SPD) in Indian children with spastic cerebral palsy (CP) using child sensory profile-2 (CSP-2) caregiver questionnaire. The authors surveyed 230 caregivers of children aged 3 to 14 y with spastic CP, using CSP-2. The difference in prevalence and distribution of SPDs among the CP subtypes and Gross Motor Function Classification System (GMFCS) levels was done. Overall prevalence of "Definite" (>2 SD) SPDs was 83%. Forty-seven percent had definite SPDs in more than one sensory subsection. Prevalence of definite SPDs was similar among the spastic CP subtypes. "Conduct" domain had more affection among hemiplegics and quadriplegics. "Avoiding" pattern was observed more in quadriplegics and "Seeking" pattern was observed less in diplegics. Severe GMFCS levels had more definite sensory processing deficits. SPDs are highly prevalent in children with spastic CP with unique patterns of affection among the spastic CP subtypes.

7.
Saudi Pharm J ; 32(3): 101985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380162

RESUMO

This study was designed to assess both the quality and cost aspects of various branded and generic formulations of angiotensin receptor blockers, specifically Irbesartan, Losartan Potassium, Olmesartan Medoxomil, Telmisartan, and Valsartan. The collected samples underwent distinct quality evaluations using the methods outlined in different global Pharmacopoeias (British Pharmacopoeia/European Pharmacopoeia, Indian Pharmacopoeia and United States Pharmacopoeia). These drugs were characterized using Fourier-Transform Infrared Spectroscopy and Nuclear Magnetic Resonance techniques, while their quality and concentration were analysed using High Performance Liquid Chromatography. The release profile of the drugs was examined through dissolution testing. Additionally, a cost comparison analysis was carried out by determining the prevailing market prices of the drugs. The evaluated branded and generic angiotensin receptor blockers were found to meet the established standards for impurities, active drug content, and dissolution as set by these Pharmacopoeias, indicating their optimal quality. Notably, the generic drugs exhibited significantly lower costs compared to their branded counterparts. This study confirms that the quality of generic angiotensin receptor blockers is equivalent to that of their branded counterparts. Consequently, these findings support the practicality of utilizing generic drugs as a more economically sustainable and cost-effective approach to managing diseases, especially those of chronic nature.

8.
Indian J Med Res ; 158(4): 439-446, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006347

RESUMO

BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii. METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR. RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-ß-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1. INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.


Assuntos
Acinetobacter baumannii , Infecções Bacterianas , Infecção Hospitalar , Humanos , Virulência/genética , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , beta-Lactamases/genética , Fatores de Virulência/genética , Biofilmes , Infecção Hospitalar/microbiologia , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana
9.
PeerJ ; 11: e15590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529215

RESUMO

The biosynthesis of nanoparticles using the green route is an effective strategy in nanotechnology that provides a cost-effective and environmentally friendly alternative to physical and chemical methods. This study aims to prepare an aqueous extract of Ocimum sanctum (O. sanctum)-based silver nanoparticles (AgNPs) through the green route and test their antibacterial activity. The biosynthesized silver nanoparticles were characterised by colour change, UV spectrometric analysis, FTIR, and particle shape and size morphology by SEM and TEM images. The nanoparticles are almost spherical to oval or rod-shaped with smooth surfaces and have a mean particle size in the range of 55 nm with a zeta potential of -2.7 mV. The antibacterial activities of AgNPs evaluated against clinically isolated multidrug-resistant Acinetobacter baumannii (A. baumannii) showed that the AgNPs from O. sanctum are effective in inhibiting A. baumannii growth with a zone of inhibition of 15 mm in the agar well diffusion method and MIC and MBC of 32 µg/mL and 64 µg/mL, respectively. The SEM images of A. baumannii treated with AgNPs revealed damage and rupture in bacterial cells. The time-killing assay by spectrophotometry revealed the time- and dose-dependent killing action of AgNPs against A. baumannii, and the assay at various concentrations and time intervals indicated a statistically significant result in comparison with the positive control colistin at 2 µg/mL (P < 0.05). The cytotoxicity test using the MTT assay protocol showed that prepared nanoparticles of O. sanctum are less toxic against human cell A549. This study opens up a ray of hope to explore the further research in this area and to improve the antimicrobial activities against multidrug resistant bacteria.


Assuntos
Acinetobacter baumannii , Acinetobacter calcoaceticus , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/uso terapêutico , Prata/farmacologia , Ocimum sanctum , Antibacterianos/farmacologia
10.
BMJ Glob Health ; 8(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558269

RESUMO

Management of COVID-19 in Africa is challenging due to limited resources, including the high cost of vaccines, diagnostics, medical devices and routine pharmaceuticals. These challenges, in addition to wide acceptability, have resulted in increased use of herbal medicines based on African traditional medicines (ATMs) by patients in Africa. This is in spite of the often-significant gaps in evidence regarding these traditional medicines as to their efficacy and safety for COVID-19. African scientists, with some support from their governments, and guidance from WHO and other bodies, are addressing this evidence gap, developing and testing herbal medicines based on ATMs to manage mild-to-moderate cases of COVID-19. Such efforts need further support to meet public health needs.


Assuntos
COVID-19 , Humanos , Medicinas Tradicionais Africanas , Pandemias , África , Extratos Vegetais
11.
Curr Drug Targets ; 24(10): 816-837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37170981

RESUMO

The "serotonin hypothesis of depression" is approximately fifty years old, and in spite of vast literature, the exact role of serotonin in depression pathophysiology is still unclear, as whether a lower serotonin level causes depression or depression causes a reduction in serotonin level has become a tough challenge for researchers to understand the actual involvement of serotonin in depression. Several pre-clinical and clinical studies have illustrated the multi-faceted signalling action of serotonin in depression and vouch for the significant or unavoidable role of serotonin in depression. In this review, the journey of the serotonin hypothesis of depression from the 1950s to the present time has been analysed to understand the serotonin hypothesis of depression and investigate the new molecular targets for the development of new future anti- depressants. The old and new theories of possible cellular mechanisms found to be involved in the pathophysiology of major depression or stress, such as polymorphism of serotonin transporters, enzyme modulating serotonergic activity, reduction in the level of serotonin and involvement of different sub-types of receptors, have been discussed in the respective review. Thus, in this review, the new signature targets to increase serotonin levels have been identified, which would help the researcher in the drug development of new faster-acting antidepressants.


Assuntos
Transtorno Depressivo Maior , Serotonina , Humanos , Pessoa de Meia-Idade , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina
12.
Cancer Metastasis Rev ; 42(3): 847-889, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37204562

RESUMO

Cancer is one of the life-threatening diseases accountable for millions of demises globally. The inadequate effectiveness of the existing chemotherapy and its harmful effects has resulted in the necessity of developing innovative anticancer agents. Thiazolidin-4-one scaffold is among the most important chemical skeletons that illustrate anticancer activity. Thiazolidin-4-one derivatives have been the subject of extensive research and current scientific literature reveals that these compounds have shown significant anticancer activities. This manuscript is an earnest attempt to review novel thiazolidin-4-one derivatives demonstrating considerable potential as anticancer agents along with a brief discussion of medicinal chemistry-related aspects of these compounds and structural activity relationship studies in order to develop possible multi-target enzyme inhibitors. Most recently, various synthetic strategies have been developed by researchers to get various thiazolidin-4-one derivatives. In this review, the authors highlight the various synthetic, green, and nanomaterial-based synthesis routes of thiazolidin-4-ones as well as their role in anticancer activity by inhibition of various enzymes and cell lines. The detailed description of the existing modern standards in the field presented in this article may be interesting and beneficial to the scientists for further exploration of these heterocyclic compounds as possible anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Relação Estrutura-Atividade
13.
Mol Cell Biochem ; 478(10): 2221-2240, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36689040

RESUMO

COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-2. COVID-19 has changed the world scenario and caused mortality around the globe. Patients who recovered from COVID-19 have shown neurological, psychological, renal, cardiovascular, pulmonary, and hematological complications. In some patients, complications lasted more than 6 months. However, significantly less attention has been given to post-COVID complications. Currently available drugs are used to tackle the complications, but new interventions must address the problem. Phytochemicals from natural sources have been evaluated in recent times to cure or alleviate COVID-19 symptoms. An edible plant, Solanum nigrum, could be therapeutic in treating COVID-19 as the AYUSH ministry of India prescribes it during the pandemic. S. nigrum demonstrates anti-inflammatory, immunomodulatory, and antiviral action to treat the SARS-CoV-2 infection and its post-complications. Different parts of the plant represent a reduction in proinflammatory cytokines and prevent multi-organ failure by protecting various organs (liver, kidney, heart, neuro, and lung). The review proposes the possible role of the plant S. nigrum in managing the symptoms of COVID-19 and its post-COVID complications based on in silico docking and pharmacological studies. Further systematic and experimental studies are required to validate our hypothesis.


Assuntos
COVID-19 , Solanum nigrum , Humanos , COVID-19/complicações , SARS-CoV-2 , Pulmão , Antivirais/farmacologia
14.
J Diabetes Sci Technol ; 17(2): 458-466, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861793

RESUMO

BACKGROUND: Medication adherence in type 2 diabetes mellitus (T2DM) patients is often suboptimal resulting in complications. There has been a growing interest in using mobile apps for improving medication adherence. OBJECTIVE: The objective of this work was to systematically review the clinical trials that have used mobile app-based interventions in T2DM patients for improving medication adherence. METHODOLOGY: A systematic search was performed to identify published clinical trials between January 2008 and December 2020 in databases-PubMed, Cochrane Library, and Google Scholar. All studies were assessed for risk of bias using quality rating tool from the Cochrane Handbook for Systematic Reviews of Interventions. RESULTS: Seven clinical studies having 649 participants were studied. The median sample size was 58 (range = 41-247) and the median age of participants was 53.2 (range = 48-69.4) years. All studies showed improvements in adherence; however, only three studies reported statically significant improvements in adherence measures. Selected studies were deemed as unclear in their risk of bias and the most common source of risk of bias among the studies was the absence of objective outcome assessment. CONCLUSIONS: Mobile apps appear to be effective interventions to help improve medication adherence in T2DM patients compared with conventional care strategies. The features of the App to improvise medical adherence cannot be defined based on the meta-analysis because of heterogeneity of study designs and less number of sample size. Systematically planned studies would set up applicability of mobile apps in the clinical management of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Aplicativos Móveis , Idoso , Humanos , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Adesão à Medicação , Projetos de Pesquisa , Ensaios Clínicos Adaptados como Assunto
15.
Biology (Basel) ; 11(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36138822

RESUMO

Acinetobacter species is one of the most prevailing nosocomial pathogens with a potent ability to develop antimicrobial resistance. It commonly causes infections where there is a prolonged utilization of medical devices such as CSF shunts, catheters, endotracheal tubes, and similar. There are several strains of Acinetobacter (A) species (spp), among which the majority are pathogenic to humans, but A. baumannii are entirely resistant to several clinically available antibiotics. The crucial mechanism that renders them a multidrug-resistant strain is their potent ability to synthesize biofilms. Biofilms provide ample opportunity for the microorganisms to withstand the harsh environment and further cause chronic infections. Several studies have enumerated multiple physiological and virulence factors responsible for the production and maintenance of biofilms. To further enhance our understanding of this pathogen, in this review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.

16.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628343

RESUMO

BA.2, a sublineage of Omicron BA.1, is now prominent in many parts of the world. Early reports have indicated that BA.2 is more infectious than BA.1. To gain insight into BA.2 mutation profile and the resulting impact of mutations on interactions with receptor and/or monoclonal antibodies, we analyzed available sequences, structures of Spike/receptor and Spike/antibody complexes, and conducted molecular dynamics simulations. The results showed that BA.2 had 50 high-prevalent mutations, compared to 48 in BA.1. Additionally, 17 BA.1 mutations were not present in BA.2. Instead, BA.2 had 19 unique mutations and a signature Delta variant mutation (G142D). The BA.2 had 28 signature mutations in Spike, compared to 30 in BA.1. This was due to two revertant mutations, S446G and S496G, in the receptor-binding domain (RBD), making BA.2 somewhat similar to Wuhan-Hu-1 (WT), which had G446 and G496. The molecular dynamics simulations showed that the RBD consisting of G446/G496 was more stable than S446/S496 containing RBD. Thus, our analyses suggested that BA.2 evolved with novel mutations (i) to maintain receptor binding similar to WT, (ii) evade the antibody binding greater than BA.1, and (iii) acquire mutation of the Delta variant that may be associated with the high infectivity.


Assuntos
Anticorpos Monoclonais , Simulação de Dinâmica Molecular , Mutação
17.
Semin Cancer Biol ; 86(Pt 3): 753-768, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34271147

RESUMO

It is a major concern to treat cancer successfully, due to the distinctive pathophysiology of cancer cells and the gradual manifestation of resistance. Specific action, adverse effects and development of resistance has prompted the urgent requirement of exploring alternative anti-tumour treatment therapies. The naturally derived microbial toxins as a therapy against cancer cells are a promisingly new dimension. Various important microbial toxins such as Diphtheria toxin, Vibrio cholera toxin, Aflatoxin, Patulin, Cryptophycin-55, Chlorella are derived from several bacterial, fungal and algal species. These agents act on different biotargets such as inhibition of protein synthesis, reduction in cell growth, regulation of cell cycle and many cellular processes. Bacterial toxins produce actions primarily by targeting protein moieties and some immunomodulation and few acts through DNA. Fungal toxins appear to have more DNA damaging activity and affect the cell cycle. Algal toxins produce alteration in mitochondrial phosphorylation. In conclusion, microbial toxins and their metabolites appear to have a great potential to provide a promising option for the treatment and management to combat cancer.


Assuntos
Toxinas Bacterianas , Chlorella , Neoplasias , Humanos , Toxinas Bacterianas/farmacologia , Toxina da Cólera/farmacologia , Neoplasias/tratamento farmacológico
18.
Mol Cell Biochem ; 477(1): 225-240, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34655418

RESUMO

Severe acute respiratory syndrome-coronavirus-2 (COVID-19) virus uses Angiotensin-Converting Enzyme 2 (ACE2) as a gateway for their entry into the human body. The ACE2 with cleaved products have emerged as major contributing factors to multiple physiological functions and pathogenic complications leading to the clinical consequences of the COVID-19 infection Decreased ACE2 expression restricts the viral entry into the human cells and reduces the viral load. COVID-19 infection reduces the ACE2 expression and induces post-COVID-19 complications like pneumonia and lung injury. The modulation of the ACE2-Ang (1-7)-Mas (AAM) axis is also being explored as a modality to treat post-COVID-19 complications. Evidence indicates that specific food components may modulate the AAM axis. The variations in the susceptibility to COVID-19 infection and the post-COVID its complications are being correlated with varied dietary habits. Some of the food substances have emerged to have supportive roles in treating post-COVID-19 complications and are being considered as adjuvants to the COVID-19 therapy. It is possible that some of their active ingredients may emerge as the direct treatment for the COVID-19.


Assuntos
Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/complicações , COVID-19/dietoterapia , Fragmentos de Peptídeos/metabolismo , Proto-Oncogene Mas/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/virologia , Proteínas Alimentares/farmacologia , Flavonoides/farmacologia , Humanos , Pulmão/patologia , Pulmão/virologia , Óleos de Plantas/farmacologia , Polifenóis/farmacologia , Terpenos/farmacologia , Internalização do Vírus , Vitaminas/farmacologia
19.
Can J Physiol Pharmacol ; 100(3): 240-251, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34614370

RESUMO

Cancer cachexia is mainly characterized by wasting of skeletal muscles and fat and body weight loss, along with severe complications of major organs like liver, heart, brain and bone. There can be diminishing performance of these major organs as cancer cachexia progresses, one such drastic effect on the cardiac system. In the present study, differential effect of histone deacetylase inhibitors (HDACi) on cardiac complications associated with cancer cachexia is studied. Two models were used to induce cancer cachexia: B16F1 induced metastatic cancer cachexia and Lewis lung carcinoma cell - induced cancer cachexia. Potential of Class I HDACi entinostat, Class II HDACi MC1568, and nonspecific HDACi sodium butyrate on cardiac complications were evaluated using the cardiac hypertrophy markers, hemodynamic markers, and cardiac markers along with histopathological evaluation of heart sections by Periodic acid-Schiff staining, Masson's trichrome staining, Picro-sirius red staining, and haematoxylin and eosin staining. Immunohistochemistry evaluation by vimentin and caspase 3 protein expression was evaluated. Entinostat showed promising results by attenuating the cardiac complications, and MC1568 treatment further exacerbated the cardiac complications, while non-conclusive effect were recorded after treatment with sodium butyrate. This study will be helpful in evaluating other HDACi for potential in cardiac complications associated with cancer cachexia.


Assuntos
Benzamidas/uso terapêutico , Caquexia/tratamento farmacológico , Caquexia/etiologia , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/complicações , Piridinas/uso terapêutico , Animais , Benzamidas/farmacologia , Ácido Butírico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/efeitos adversos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , Pirróis/efeitos adversos
20.
Curr Pharm Biotechnol ; 23(1): 98-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33480338

RESUMO

Changes in human lifestyles and environmental deterioration globally cause the emergence of new viruses, posing research challenges. The outburst of COVID-19 (nCoV19) is a recent example, wherein effective management of virus, using the conventional medication and effective diagnostic measures is a challenge. While many ongoing strategies from vaccine development to drug repurposing are currently being investigated, a targeted approach with nanotechnology can be helpful to meet the demand for preventive and diagnostic measures. The significant results of nanotechnology in providing better efficacy of pharmaceutical drugs is expected to combat nCoV19 by using nanotechnology- based solutions, preventive treatment, and diagnosis. This article addresses the dire need for nanotechnology-based solutions in the current pandemic, as well as analyzes the ongoing innovation and existing patents that can be used to provide better solutions. Multiple applications of nanotechnology are considered to be helpful in preventive and diagnostic measures, immune response modulation, and immunity boosters, along with projecting a pathway for industry and academic researchers for addressing such a pandemic.


Assuntos
COVID-19 , Humanos , Nanotecnologia , Pandemias , SARS-CoV-2 , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA