Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Hematol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702444

RESUMO

Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-ETO is one of the most common subtypes of AML. Although t(8;21) AML has been classified as favorable-risk, only about half of patients are cured with current therapies. Several genetic abnormalities, including TP53 mutations and deletions, negatively impact survival in t(8;21) AML. In this study, we established Cas9+ mouse models of t(8;21) AML with intact or deficient Tpr53 (a mouse homolog of TP53) using a retrovirus-mediated gene transfer and transplantation system. Trp53 deficiency accelerates the in vivo development of AML driven by RUNX1-ETO9a, a short isoform of RUNX1-ETO with strong leukemogenic potential. Trp53 deficiency also confers resistance to genetic depletion of RUNX1 and a TP53-activating drug in t(8;21) AML. However, Trp53-deficient t(8;21) AML cells were still sensitive to several drugs such as dexamethasone. Cas9+ RUNX1-ETO9a cells with/without Trp53 deficiency can produce AML in vivo, can be cultured in vitro for several weeks, and allow efficient gene depletion using the CRISPR/Cas9 system, providing useful tools to advance our understanding of t(8;21) AML.

3.
Haematologica ; 109(4): 1107-1120, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37731380

RESUMO

Acute myeloid leukemia (AML) is a hematologic malignancy that frequently relapses, even if remission can be achieved with intensive chemotherapy. One known relapse mechanism is the escape of leukemic cells from immune surveillance. Currently, there is no effective immunotherapy for AML because of the lack of specific antigens. Here, we aimed to elucidate the association between CD155 and CD112 in AML cell lines and primary AML samples and determine the therapeutic response. Briefly, we generated NK-92 cell lines (NK-92) with modified DNAX-associated molecule 1 (DNAM-1) and T-cell immunoglobulin and ITIM domain (TIGIT), which are receptors of CD155 and CD112, respectively. Analysis of 200 cases of AML indicated that the survival of patients with high expression of CD112 was shorter than that of patients with low expression. NK-92 DNAM-1 exhibited enhanced cytotoxic activity against AML cell lines and primary cells derived from patients with AML. DNAM-1 induction in NK-92 cells enhanced the expression of cytotoxicity-related genes, thus overcoming the inhibitory activity of TIGIT. Between CD155 and CD112, CD112 is an especially important target for natural killer (NK)-cell therapy of AML. Using a xenograft model, we confirmed the enhanced antitumor effect of NK-92 DNAM-1 compared with that of NK-92 alone. We also discovered that CD112 (Nectin-2), an immune checkpoint molecule belonging to the Nectin/Nectin-like family, functions as a novel target of immunotherapy. In conclusion, modification of the DNAM-1/CD112 axis in NK cells may be an effective novel immunotherapy for AML. Furthermore, our findings suggest that the levels of expression of these molecules are potential prognostic markers in AML.


Assuntos
Proteínas de Checkpoint Imunológico , Leucemia Mieloide Aguda , Humanos , Nectinas , Proteínas de Checkpoint Imunológico/metabolismo , Células Matadoras Naturais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Receptores Imunológicos , Terapia Baseada em Transplante de Células e Tecidos , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo
4.
Nat Commun ; 14(1): 8372, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102116

RESUMO

ATP-dependent chromatin remodeling SWI/SNF complexes exist in three subcomplexes: canonical BAF (cBAF), polybromo BAF (PBAF), and a newly described non-canonical BAF (ncBAF). While cBAF and PBAF regulate fates of multiple cell types, roles for ncBAF in hematopoietic stem cells (HSCs) have not been investigated. Motivated by recent discovery of disrupted expression of BRD9, an essential component of ncBAF, in multiple cancers, including clonal hematopoietic disorders, we evaluate here the role of BRD9 in normal and malignant HSCs. BRD9 loss enhances chromatin accessibility, promoting myeloid lineage skewing while impairing B cell development. BRD9 significantly colocalizes with CTCF, whose chromatin recruitment is augmented by BRD9 loss, leading to altered chromatin state and expression of myeloid-related genes within intact topologically associating domains. These data uncover ncBAF as critical for cell fate specification in HSCs via three-dimensional regulation of gene expression and illuminate roles for ncBAF in normal and malignant hematopoiesis.


Assuntos
Cromatina , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo
5.
Commun Biol ; 6(1): 1294, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129572

RESUMO

Immunotherapy has attracted considerable attention as a therapeutic strategy for cancers including acute myeloid leukemia (AML). In this study, we found that the development of several aggressive subtypes of AML is slower in Rag2-/- mice despite the lack of B and T lymphocytes, even compared to the immunologically normal C57BL/6 mice. Furthermore, an orally active p53-activating drug shows stronger antileukemia effect on AML in Rag2-/- mice than C57BL/6 mice. Intriguingly, Natural Killer (NK) cells in Rag2-/- mice are increased in number, highly express activation markers, and show increased cytotoxicity to leukemia cells in a coculture assay. B2m depletion that triggers missing-self recognition of NK cells impairs the growth of AML cells in vivo. In contrast, NK cell depletion accelerates AML progression in Rag2-/- mice. Interestingly, immunogenicity of AML keeps changing during tumor evolution, showing a trend that the aggressive AMLs generate through serial transplantations are susceptible to NK cell-mediated tumor suppression in Rag2-/- mice. Thus, we show the critical role of NK cells in suppressing the development of certain subtypes of AML using Rag2-/- mice, which lack functional lymphocytes but have hyperactive NK cells.


Assuntos
Células Matadoras Naturais , Leucemia Mieloide Aguda , Animais , Camundongos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfócitos T , Proteínas de Ligação a DNA/genética
6.
Blood ; 142(23): 2002-2015, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37738460

RESUMO

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the "don't-eat-me" signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.


Assuntos
Histonas , Leucemia Mieloide Aguda , Animais , Camundongos , Histonas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mutação , Metilação , Nucleotidiltransferases/metabolismo , Leucemia Mieloide Aguda/patologia , Imunidade , Poliploidia
7.
Cell Rep ; 42(9): 113098, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37714156

RESUMO

Decitabine (DAC) is clinically used to treat myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Our genome-wide CRISPR-dCas9 activation screen using MDS-derived AML cells indicates that mitotic regulation is critical for DAC resistance. DAC strongly induces abnormal mitosis (abscission failure or tripolar mitosis) in human myeloid tumors at clinical concentrations, especially in those with TP53 mutations or antecedent hematological disorders. This DAC-induced mitotic disruption and apoptosis are significantly attenuated in DNMT1-depleted cells. In contrast, overexpression of Dnmt1, but not the catalytically inactive mutant, enhances DAC-induced mitotic defects in myeloid tumors. We also demonstrate that DAC-induced mitotic disruption is enhanced by pharmacological inhibition of the ATR-CLSPN-CHK1 pathway. These data challenge the current assumption that DAC inhibits leukemogenesis through DNMT1 inhibition and subsequent DNA hypomethylation and highlight the potent activity of DAC to disrupt mitosis through aberrant DNMT1-DNA covalent bonds.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Decitabina/farmacologia , Decitabina/uso terapêutico , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA , Proteínas Adaptadoras de Transdução de Sinal/genética
8.
Cancer Sci ; 114(10): 4032-4040, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37522388

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is one of the most frequently occurring cancers in children and is associated with a poor prognosis. Here, we performed large-scale screening of natural compound libraries to identify potential drugs against T-ALL. We identified three low-molecular-weight compounds (auxarconjugatin-B, rumbrin, and lavendamycin) that inhibited the proliferation of the T-ALL cell line CCRF-CEM, but not that of the B lymphoma cell line Raji in a low concentration range. Among them, auxarconjugatin-B and rumbrin commonly contained a polyenyl 3-chloropyrrol in their chemical structure, therefore we chose auxarconjugatin-B for further analyses. Auxarconjugatin-B suppressed the in vitro growth of five human T-ALL cell lines and two T-ALL patient-derived cells, but not that of adult T-cell leukemia patient-derived cells. Cultured normal T cells were several-fold resistant to auxarconjugatin-B. Auxarconjugatin-B and its synthetic analogue Ra#37 depolarized the mitochondrial membrane potential of CCRF-CEM cells within 3 h of treatment. These compounds are promising seeds for developing novel anti-T-ALL drugs.

9.
FEBS J ; 290(21): 5141-5157, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37500075

RESUMO

Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica , Leucemia/genética
10.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462944

RESUMO

Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.


Assuntos
Histiocitose , Receptor 7 Toll-Like , Animais , Camundongos , Citocinas/genética , Histiocitose/genética , Mutação/genética , Nucleosídeos , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
11.
EMBO Mol Med ; 15(1): e15631, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36453131

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in de novo guanine nucleotide synthesis pathway. Although IMPDH inhibitors are widely used as effective immunosuppressants, their antitumor effects have not been proven in the clinical setting. Here, we found that acute myeloid leukemias (AMLs) with MLL-fusions are susceptible to IMPDH inhibitors in vitro. We also showed that alternate-day administration of IMPDH inhibitors suppressed the development of MLL-AF9-driven AML in vivo without having a devastating effect on immune function. Mechanistically, IMPDH inhibition induced overactivation of Toll-like receptor (TLR)-TRAF6-NF-κB signaling and upregulation of an adhesion molecule VCAM1, which contribute to the antileukemia effect of IMPDH inhibitors. Consequently, combined treatment with IMPDH inhibitors and the TLR1/2 agonist effectively inhibited the development of MLL-fusion AML. These findings provide a rational basis for clinical testing of IMPDH inhibitors against MLL-fusion AMLs and potentially other aggressive tumors with active TLR signaling.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Inibidores Enzimáticos/farmacologia , NF-kappa B , Imunossupressores/uso terapêutico
12.
Cell Mol Life Sci ; 79(9): 473, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941268

RESUMO

Hematopoietic stem cells (HSCs) undergo progressive functional decline over time due to both internal and external stressors, leading to aging of the hematopoietic system. A comprehensive understanding of the molecular mechanisms underlying HSC aging will be valuable in developing novel therapies for HSC rejuvenation and to prevent the onset of several age-associated diseases and hematological malignancies. This review considers the general causes of HSC aging that range from cell-intrinsic factors to cell-extrinsic factors. In particular, epigenetics and inflammation have been implicated in the linkage of HSC aging, clonality, and oncogenesis. The challenges in clarifying mechanisms of HSC aging have accelerated the development of therapeutic interventions to rejuvenate HSCs, the major goal of aging research; these details are also discussed in this review.


Assuntos
Senescência Celular , Células-Tronco Hematopoéticas , Epigênese Genética , Hematopoese , Células-Tronco Hematopoéticas/fisiologia
13.
Exp Hematol ; 112-113: 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644277

RESUMO

Transcription factor RUNX1 plays key roles in the establishment and maintenance of the hematopoietic system. Although RUNX1 has been considered a beneficial tumor suppressor, several recent reports have described the tumor-promoting role of RUNX1 in a variety of hematopoietic neoplasms. In this study, we assessed the effect of RUNX1 depletion in multiple human leukemia cell lines using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, and confirmed that RUNX1 is in fact required for sustaining their leukemic proliferation. To achieve efficient RUNX1 inhibition in leukemia cells, we then examined the effect of lipid nanoparticle (LNP)-mediated delivery of RUNX1-targeting small interfering (si)RNA using two tumor-tropic LNPs. The LNPs containing RUNX1-targeting siRNA were efficiently incorporated into myeloid and T-cell leukemia cell lines and patient-derived primary human acute myeloid leukemia (AML) cells, downregulated RUNX1 expression, induced cell cycle arrest and apoptosis, and exhibited the growth-inhibitory effect in them. In contrast, the LNPs were not efficiently incorporated into normal cord blood CD34+ cells, indicating their minimum cytotoxicity. Thus, our study highlights RUNX1 as a potential therapeutic target to inhibit leukemogenesis, and provides the LNP-based siRNA delivery as a promising approach to deplete RUNX1 specifically in leukemia cells.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Lipossomos , Nanopartículas , RNA Interferente Pequeno/genética
14.
Cell Rep ; 39(6): 110805, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545056

RESUMO

Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis and frequent progression to leukemia. It has long remained unresolved how MDS cells, which are less proliferative, inhibit normal hematopoiesis and eventually dominate the bone marrow space. Despite several studies implicating mesenchymal stromal or stem cells (MSCs), a principal component of the HSC niche, in the inhibition of normal hematopoiesis, the molecular mechanisms underlying this process remain unclear. Here, we demonstrate that both human and mouse MDS cells perturb bone metabolism by suppressing the osteolineage differentiation of MSCs, which impairs the ability of MSCs to support normal HSCs. Enforced MSC differentiation rescues the suppressed normal hematopoiesis in both in vivo and in vitro MDS models. Intriguingly, the suppression effect is reversible and mediated by extracellular vesicles (EVs) derived from MDS cells. These findings shed light on the novel MDS EV-MSC axis in ineffective hematopoiesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Animais , Vesículas Extracelulares/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Síndromes Mielodisplásicas/metabolismo
15.
Cancer Sci ; 113(4): 1182-1194, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133065

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is an age-associated phenomenon characterized by clonal expansion of blood cells harboring somatic mutations in hematopoietic genes, including DNMT3A, TET2, and ASXL1. Clinical evidence suggests that CHIP is highly prevalent and associated with poor prognosis in solid-tumor patients. However, whether blood cells with CHIP mutations play a causal role in promoting the development of solid tumors remained unclear. Using conditional knock-in mice that express CHIP-associated mutant Asxl1 (Asxl1-MT), we showed that expression of Asxl1-MT in T cells, but not in myeloid cells, promoted solid-tumor progression in syngeneic transplantation models. We also demonstrated that Asxl1-MT-expressing blood cells accelerated the development of spontaneous mammary tumors induced by MMTV-PyMT. Intratumor analysis of the mammary tumors revealed the reduced T-cell infiltration at tumor sites and programmed death receptor-1 (PD-1) upregulation in CD8+ T cells in MMTV-PyMT/Asxl1-MT mice. In addition, we found that Asxl1-MT induced T-cell dysregulation, including aberrant intrathymic T-cell development, decreased CD4/CD8 ratio, and naïve-memory imbalance in peripheral T cells. These results indicate that Asxl1-MT perturbs T-cell development and function, which contributes to creating a protumor microenvironment for solid tumors. Thus, our findings raise the possibility that ASXL1-mutated blood cells exacerbate solid-tumor progression in ASXL1-CHIP carriers.


Assuntos
Hematopoiese Clonal , Neoplasias , Proteínas Repressoras , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoiese Clonal/genética , Hematopoese/genética , Camundongos , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Microambiente Tumoral
16.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132438

RESUMO

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Assuntos
Diferenciação Celular , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Via de Sinalização Wnt/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Cartilagem/citologia , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína do Locus do Complexo MDS1 e EVI1/deficiência , Proteína do Locus do Complexo MDS1 e EVI1/genética , Camundongos , Camundongos Knockout , Crista Neural/citologia , Crista Neural/metabolismo , Sequências Reguladoras de Ácido Nucleico , Crânio/citologia , Crânio/metabolismo , Proteínas Wnt/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
17.
Nat Commun ; 13(1): 271, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022428

RESUMO

Leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) are quiescent, insensitive to BCR-ABL1 tyrosine kinase inhibitors (TKIs) and responsible for CML relapse. Therefore, eradicating quiescent CML LSCs is a major goal in CML therapy. Here, using a G0 marker (G0M), we narrow down CML LSCs as G0M- and CD27- double positive cells among the conventional CML LSCs. Whole transcriptome analysis reveals NF-κB activation via inflammatory signals in imatinib-insensitive quiescent CML LSCs. Blocking NF-κB signals by inhibitors of interleukin-1 receptor-associated kinase 1/4 (IRAK1/4 inhibitors) together with imatinib eliminates mouse and human CML LSCs. Intriguingly, IRAK1/4 inhibitors attenuate PD-L1 expression on CML LSCs, and blocking PD-L1 together with imatinib also effectively eliminates CML LSCs in the presence of T cell immunity. Thus, IRAK1/4 inhibitors can eliminate CML LSCs through inhibiting NF-κB activity and reducing PD-L1 expression. Collectively, the combination of TKIs and IRAK1/4 inhibitors is an attractive strategy to achieve a radical cure of CML.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/farmacologia , Doença Crônica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia
18.
Sci Rep ; 11(1): 23889, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903756

RESUMO

Cell behavior is controlled by complex gene regulatory networks. Although studies have uncovered diverse roles of individual genes, it has been challenging to record or control sequential genetic events in living cells. In this study, we designed two cellular chain reaction systems that enable sequential sgRNA activation in mammalian cells using a nickase Cas9 tethering of a cytosine nucleotide deaminase (nCas9-CDA). In these systems, thymidine (T)-to-cytosine (C) substitutions in the scaffold region of the sgRNA or the TATA box-containing loxP sequence (TATAloxP) are corrected by the nCas9-CDA, leading to activation of the next sgRNA. These reactions can occur multiple times, resulting in cellular chain reactions. As a proof of concept, we established a chain reaction by repairing sgRNA scaffold mutations in 293 T cells. Importantly, the results obtained in yeast or in vitro did not match those obtained in mammalian cells, suggesting that in vivo chain reactions need to be optimized in appropriate cellular contexts. Our system may lay the foundation for building cellular chain reaction systems that have a broad utility in the future biomedical research.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Edição de Genes , Mutação , RNA Guia de Cinetoplastídeos/genética , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Células HEK293 , Humanos , TATA Box/genética , Timidina/genética
19.
Cell Rep ; 36(8): 109576, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433054

RESUMO

Paraspeckles are membraneless organelles formed through liquid-liquid phase separation and consist of multiple proteins and RNAs, including NONO, SFPQ, and NEAT1. The role of paraspeckles and the component NONO in hematopoiesis remains unknown. In this study, we show histone modifier ASXL1 is involved in paraspeckle formation. ASXL1 forms phase-separated droplets, upregulates NEAT1 expression, and increases NONO-NEAT1 interactions through the C-terminal intrinsically disordered region (IDR). In contrast, a pathogenic ASXL mutant (ASXL1-MT) lacking IDR does not support the interaction of paraspeckle components. Furthermore, paraspeckles are disrupted and Nono localization is abnormal in the cytoplasm of hematopoietic stem and progenitor cells (HSPCs) derived from ASXL1-MT knockin mice. Nono depletion and the forced expression of cytoplasmic NONO impair the repopulating potential of HSPCs, as does ASXL1-MT. Our study indicates a link between ASXL1 and paraspeckle components in the maintenance of normal hematopoiesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Paraspeckles/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Células HL-60 , Células HeLa , Hematopoese , Humanos , Camundongos , Camundongos Transgênicos , Paraspeckles/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Células THP-1
20.
Cell Death Differ ; 28(9): 2601-2615, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33762742

RESUMO

Maintenance of the pancreatic acinar cell phenotype suppresses tumor formation. Hence, repetitive acute or chronic pancreatitis, stress conditions in which the acinar cells dedifferentiate, predispose for cancer formation in the pancreas. Dedifferentiated acinar cells acquire a large panel of duct cell-specific markers. However, it remains unclear to what extent dedifferentiated acini differ from native duct cells and which genes are uniquely regulating acinar cell dedifferentiation. Moreover, most studies have been performed on mice since the availability of human cells is scarce. Here, we applied a non-genetic lineage tracing method of human pancreatic exocrine acinar and duct cells that allowed cell-type-specific gene expression profiling by RNA sequencing. Subsequent to this discovery analysis, one transcription factor that was unique for dedifferentiated acinar cells was functionally characterized. RNA sequencing analysis showed that human dedifferentiated acinar cells expressed genes in "Pathways of cancer" with a prominence of MECOM (EVI-1), a transcription factor that was not expressed by duct cells. During mouse embryonic development, pre-acinar cells also transiently expressed MECOM and in the adult mouse pancreas, MECOM was re-expressed when mice were subjected to acute and chronic pancreatitis, conditions in which acinar cells dedifferentiate. In human cells and in mice, MECOM expression correlated with and was directly regulated by SOX9. Mouse acinar cells that, by genetic manipulation, lose the ability to upregulate MECOM showed impaired cell adhesion, more prominent acinar cell death, and suppressed acinar cell dedifferentiation by limited ERK signaling. In conclusion, we transcriptionally profiled the two major human pancreatic exocrine cell types, acinar and duct cells, during experimental stress conditions. We provide insights that in dedifferentiated acinar cells, cancer pathways are upregulated in which MECOM is a critical regulator that suppresses acinar cell death by permitting cellular dedifferentiation.


Assuntos
Células Acinares/metabolismo , Morte Celular/genética , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Oncogenes/genética , Animais , Desdiferenciação Celular , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA