Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 14(4): e0215405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30995279

RESUMO

Alterations of structure and density of cortical bone are associated with fragility fractures and can be assessed in vivo in humans at the tibia. Bone remodeling deficits in aging women have been recently linked to an increase in size of cortical pores. In this ex vivo study, we characterized the cortical microarchitecture of 19 tibiae from human donors (aged 69 to 94 years) to address, whether this can reflect impairments of the mechanical competence of the proximal femur, i.e., a major fracture site in osteoporosis. Scanning acoustic microscopy (12 µm pixel size) provided reference microstructural measurements at the left tibia, while the bone vBMD at this site was obtained using microcomputed tomography (microCT). The areal bone mineral density of both left and right femoral necks (aBMDneck) was measured by dual-energy X-ray absorptiometry (DXA), while homogenized nonlinear finite element models based on high-resolution peripheral quantitative computed tomography provided hip stiffness and strength for one-legged standing and sideways falling loads. Hip strength was associated with aBMDneck (r = 0.74 to 0.78), with tibial cortical thickness (r = 0.81) and with measurements of the tibial cross-sectional geometry (r = 0.48 to 0.73) of the same leg. Tibial vBMD was associated with hip strength only for standing loads (r = 0.59 to 0.65). Cortical porosity (Ct.Po) of the tibia was not associated with any of the femoral parameters. However, the proportion of Ct.Po attributable to large pores (diameter > 100 µm) was associated with hip strength in both standing (r = -0.61) and falling (r = 0.48) conditions. When added to aBMDneck, the prevalence of large pores could explain up to 17% of the femur ultimate force. In conclusion, microstructural characteristics of the tibia reflect hip strength as well as femoral DXA, but it remains to be tested whether such properties can be measured in vivo.


Assuntos
Absorciometria de Fóton , Densidade Óssea , Osso Cortical , Colo do Fêmur , Tíbia , Microtomografia por Raio-X , Adulto , Idoso , Idoso de 80 Anos ou mais , Osso Cortical/diagnóstico por imagem , Osso Cortical/metabolismo , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Porosidade , Tíbia/diagnóstico por imagem , Tíbia/metabolismo
3.
Arch Osteoporos ; 14(1): 21, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30783777

RESUMO

The estimation of cortical thickness (Ct.Th) and porosity (Ct.Po) at the tibia using axial transmission ultrasound was successfully validated ex vivo against site-matched micro-computed tomography. The assessment of cortical parameters based on full-spectrum guided-wave analysis might improve the prediction of bone fractures in a cost-effective and radiation-free manner. PURPOSE: Cortical thickness (Ct.Th) and porosity (Ct.Po) are key parameters for the identification of patients with fragile bones. The main objective of this ex vivo study was to validate the measurement of Ct.Po and Ct.Th at the tibia using a non-ionizing, low-cost, and portable 500-kHz ultrasound axial transmission system. Additional ultrasonic velocities and site-matched reference parameters were included in the study to broaden the analysis. METHODS: Guided waves were successfully measured ex vivo in 17 human tibiae using a novel 500-kHz bi-directional axial transmission probe. Theoretical dispersion curves of a transverse isotropic free plate model with invariant matrix stiffness were fitted to the experimental dispersion curves in order to estimate Ct.Th and Ct.Po. In addition, the velocities of the first arriving signal (υFAS) and A0 mode (υA0) were measured. Reference Ct.Po, Ct.Th, and vBMD were obtained from site-matched micro-computed tomography. Scanning acoustic microscopy (SAM) provided the acoustic impedance of the axial cortical bone matrix. RESULTS: The best predictions of Ct.Po (R2 = 0.83, RMSE = 2.2%) and Ct.Th (R2 = 0.92, RMSE = 0.2 mm, one outlier excluded) were obtained from the plate model. The second best predictors of Ct.Po and Ct.Th were vBMD (R2 = 0.77, RMSE = 2.6%) and υA0 (R2 = 0.28, RMSE = 0.67 mm), respectively. CONCLUSIONS: Ct.Th and Ct.Po were accurately predicted at the human tibia ex vivo using a transverse isotropic free plate model with invariant matrix stiffness. The model-based predictions were not further enhanced when we accounted for variations in axial tissue stiffness as reflected by the acoustic impedance from SAM.


Assuntos
Doenças Ósseas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Tíbia/diagnóstico por imagem , Ultrassonografia/estatística & dados numéricos , Microtomografia por Raio-X/estatística & dados numéricos , Testes de Impedância Acústica , Densidade Óssea , Osso Cortical/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Porosidade , Valor Preditivo dos Testes , Rádio (Anatomia)/diagnóstico por imagem , Tíbia/fisiopatologia , Ultrassonografia/métodos , Microtomografia por Raio-X/métodos
4.
Bone ; 114: 50-61, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860154

RESUMO

Cortical pores are determinants of the elastic properties and of the ultimate strength of bone tissue. An increase of the overall cortical porosity (Ct.Po) as well as the local coalescence of large pores cause an impairment of the mechanical competence of bone. Therefore, Ct.Po represents a relevant target for identifying patients with high fracture risk. However, given their small size, the in vivo imaging of cortical pores remains challenging. The advent of modern high-resolution peripheral quantitative computed tomography (HR-pQCT) triggered new methods for the clinical assessment of Ct.Po at the peripheral skeleton, either by pore segmentation or by exploiting local bone mineral density (BMD). In this work, we compared BMD-based Ct.Po estimates with high-resolution reference values measured by scanning acoustic microscopy. A calibration rule to estimate local Ct.Po from BMD as assessed by HR-pQCT was derived experimentally. Within areas of interest smaller than 0.5 mm2, our model was able to estimate the local Ct.Po with an error of 3.4%. The incorporation of the BMD inhomogeneity and of one parameter from the BMD distribution of the entire scan volume led to a relative reduction of the estimate error of 30%, if compared to an estimate based on the average BMD. When applied to the assessment of Ct.Po within entire cortical bone cross-sections, the proposed BMD-based method had better accuracy than measurements performed with a conventional threshold-based approach.


Assuntos
Densidade Óssea/fisiologia , Osso Cortical/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Microscopia Acústica/métodos , Idoso , Idoso de 80 Anos ou mais , Osso Cortical/patologia , Feminino , Fêmur/patologia , Humanos , Masculino , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA