Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 18, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882494

RESUMO

The order Holosporales (Alphaproteobacteria) encompasses obligate intracellular bacterial symbionts of diverse Eukaryotes. These bacteria have highly streamlined genomes and can have negative fitness effects on the host. Herein, we present a comparative analysis of the first genome sequences of 'Ca. Hepatincola porcellionum', a facultative symbiont occurring extracellularly in the midgut glands of terrestrial isopods. Using a combination of long-read and short-read sequencing, we obtained the complete circular genomes of two Hepatincola strains and an additional metagenome-assembled draft genome. Phylogenomic analysis validated its phylogenetic position as an early-branching family-level clade relative to all other established Holosporales families associated with protists. A 16S rRNA gene survey revealed that this new family encompasses diverse bacteria associated with both marine and terrestrial host species, which expands the host range of Holosporales bacteria from protists to several phyla of the Ecdysozoa (Arthropoda and Priapulida). Hepatincola has a highly streamlined genome with reduced metabolic and biosynthetic capacities as well as a large repertoire of transmembrane transporters. This suggests that this symbiont is rather a nutrient scavenger than a nutrient provider for the host, likely benefitting from a nutrient-rich environment to import all necessary metabolites and precursors. Hepatincola further possesses a different set of bacterial secretion systems compared to protist-associated Holosporales, suggesting different host-symbiont interactions depending on the host organism.

2.
Curr Zool ; 67(4): 455-464, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34616942

RESUMO

Wolbachia are the most widespread endosymbiotic bacteria in animals. In many arthropod host species, they manipulate reproduction via several mechanisms that favor their maternal transmission to offspring. Among them, cytoplasmic incompatibility (CI) promotes the spread of the symbiont by specifically decreasing the fertility of crosses involving infected males and uninfected females, via embryo mortality. These differences in reproductive efficiency may select for the avoidance of incompatible mating, a process called reinforcement, and thus contribute to population divergence. In the terrestrial isopod Porcellio dilatatus, the Wolbachia wPet strain infecting the subspecies P. d. petiti induces unidirectional CI with uninfected individuals of the subspecies P. d. dilatatus. To study the consequences of CI on P. d. dilatatus and P. d. petiti hybridization, mitochondrial haplotypes and Wolbachia infection dynamics, we used population cages seeded with different proportions of the 2 subspecies in which we monitored these genetic parameters 5 and 7 years after the initial setup. Analysis of microsatellite markers allowed evaluating the degree of hybridization between individuals of the 2 subspecies. These markers revealed an increase in P. d. dilatatus nuclear genetic signature in all mixed cages, reflecting an asymmetry in hybridization. Hybridization led to the introgressive acquisition of Wolbachia and mitochondrial haplotype from P. d. petiti into nuclear genomes dominated by alleles of P. d. dilatatus. We discuss these results with regards to Wolbachia effects on their host (CI and putative fitness cost), and to a possible reinforcement that may have led to assortative mating, as possible factors contributing to the observed results.

3.
Cell Microbiol ; 23(11): e13381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312980

RESUMO

The endosymbiont Wolbachia feminises male isopods by making them refractory to the insulin-like masculinising hormone, which shunts the autocrine development of the androgenic glands. It was, therefore, proposed that Wolbachia silences the IR receptors, either by preventing their expression or by inactivating them. We describe here the two IR paralogs of Armadillidium vulgare. They displayed a conventional structure and belonged to a family widespread among isopods. Av-IR1 displayed an ubiquist expression, whereas the expression of Av-IR2 was restricted to the gonads. Both were constitutively expressed in males and females and throughout development. However, upon silencing, altered gland physiology and gene expression therein suggested antagonistic roles for Av-IR1 (androinhibiting) and Av-IR2 (androstimulating). They may function in tandem with regulating neurohormones, as a conditional platform that conveys insulin signalling. Wolbachia infection did not alter their expression patterns: leaving the IRs unscathed, the bacteria would suppress the secretion of the neurohormones, thus inducing body-wide IR deactivation and feminisation. Adult males injected with Wolbachia acquired an intersexed physiology. Their phenotypes and gene expressions mirrored the silencing of Av-IR1 only, suggesting that imperfect feminisation stems from a flawed invasion of the androstimulating centre, whereas in fully feminised males invasion would be complete in early juveniles. TAKE AWAY: Two antagonistic Insulin Receptors were characterised in Armadillidium vulgare. The IRs were involved in androstimulating and androinhibiting functions. Wolbachia-induced feminisation did not prevent the expression of the IRs. Imperfectly feminised intersexes phenocopied the silencing of Av-IR1 only. Wolbachia would deactivate the IRs by suppressing neurosecretory co-factors.


Assuntos
Isópodes , Wolbachia , Animais , Feminino , Feminização , Humanos , Insulina , Masculino , Transdução de Sinais , Wolbachia/genética
4.
Genome Biol Evol ; 13(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33599258

RESUMO

Legionella spp. are ubiquitous bacteria principally found in water networks and ∼20 species are implicated in Legionnaire's disease. Among them, Legionella pneumophila is an intracellular pathogen of environmental protozoa, responsible for ∼90% of cases in the world. Legionella pneumophila regulates in part its virulence by a quorum sensing system named "Legionella quorum sensing," composed of a signal synthase LqsA, two histidine kinase membrane receptors LqsS and LqsT and a cytoplasmic receptor LqsR. To date, this communication system was only found in L. pneumophila. Here, we investigated 58 Legionella genomes to determine the presence of a lqs cluster or homologous receptors using TBlastN. This analysis revealed three categories of species: 19 harbored a complete lqs cluster, 20 did not possess lqsA but maintained the receptor lqsR and/or lqsS, and 19 did not have any of the lqs genes. No correlation was observed between pathogenicity and the presence of a quorum sensing system. We determined by RT-qPCR that the lqsA gene was expressed at least in four strains among different species available in our laboratory. Furthermore, we showed that the lqs genomic region was conserved even in species possessing only the receptors of the quorum sensing system, indicating an ancestral acquisition and various loss dynamics during evolution. This system could therefore function in interspecific communication as well.


Assuntos
Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Percepção de Quorum/genética , Proteínas de Bactérias/genética , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica , Genoma , Genômica , Histidina Quinase/genética , Legionella/classificação , Legionella/genética , Legionella/metabolismo , Família Multigênica , Filogenia , Virulência
5.
Sci Rep ; 10(1): 10551, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601334

RESUMO

Using the isopod Armadillidium vulgare as a case study, we review the significance of the "bacterial dosage model", which connects the expression of the extended phenotype to the rise of the Wolbachia load. In isopods, the Insulin-like Androgenic Gland hormone (IAG) induces male differentiation: Wolbachia feminizes males through insulin resistance, presumably through defunct insulin receptors. This should prevent an autocrine development of the androgenic glands so that females differentiate instead: feminization should translate as IAG silencing and increased Wolbachia load in the same developmental window. In line with the autocrine model, uninfected males expressed IAG from the first larval stage on, long before the androgenic gland primordia begin to differentiate, and exponentially throughout development. In contrast in infected males, expression fully stopped at stage 4 (juvenile), when male differentiation begins. This co-occurred with the only significant rise in the Wolbachia load throughout the life-stages. Concurrently, the raw expression of the bacterial Secretion Systems co-increased, but they were not over-expressed relative to the number of bacteria. The isopod model leads to formulate the "bacterial dosage model" throughout extended phenotypes as the conjunction between bacterial load as the mode of action, timing of multiplication (pre/post-zygotic), and site of action (soma vs. germen).


Assuntos
Feminização/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Isópodes/metabolismo , Animais , Masculino , Transdução de Sinais/fisiologia , Wolbachia
6.
Biotechnol Biofuels ; 13: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190114

RESUMO

BACKGROUND: Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS: To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS: Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.

7.
BMC Genomics ; 20(1): 462, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174468

RESUMO

BACKGROUND: Isopods constitute a particular group of crustaceans that has successfully colonized all environments including marine, freshwater and terrestrial habitats. Their ability to use various food sources, especially plant biomass, might be one of the reasons of their successful spread. All isopods, which feed on plants and their by-products, must be capable of lignocellulose degradation. This complex composite is the main component of plants and is therefore an important nutrient source for many living organisms. Its degradation requires a large repertoire of highly specialized Carbohydrate-Active enZymes (called CAZymes) which are produced by the organism itself and in some cases, by its associated microbiota. The acquisition of highly diversified CAZymes could have helped isopods to adapt to their diet and to their environment, especially during land colonization. RESULTS: To test this hypothesis, isopod host CAZomes (i.e. the entire CAZyme repertoire) were characterized in marine, freshwater and terrestrial species through a transcriptomic approach. Many CAZymes were identified in 64 isopod transcriptomes, comprising 27 de novo datasets. Our results show that marine, freshwater and terrestrial isopods exhibit different CAZomes, illustrating different strategies for lignocellulose degradation. The analysis of variations of the size of CAZy families shows these are expanded in terrestrial isopods while they are contracted in aquatic isopods; this pattern is probably resulting from the evolution of the host CAZomes during the terrestrial adaptation of isopods. We show that CAZyme gene duplications and horizontal transfers can be involved in adaptive divergence between isopod CAZomes. CONCLUSIONS: Our characterization of the CAZomes in 64 isopods species provides new insights into the evolutionary processes that enabled isopods to conquer various environments, especially terrestrial ones.


Assuntos
Isópodes/enzimologia , Lignina/metabolismo , Adaptação Fisiológica , Animais , Metabolismo dos Carboidratos/genética , Evolução Molecular , Isópodes/genética , Filogenia , Transcriptoma
8.
Gen Comp Endocrinol ; 272: 9-19, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448382

RESUMO

The first protein which has been described to interact with the malacostracan Androgenic Gland Hormone (AGH) is a binding protein called IGFBP-rP1. It has been identified and studied in several species of decapods, in which its interaction with the masculinizing hormone and its expression patterns have been established in several ways. However, this protein remains uncharacterised to date in the other malacostracan orders, like Amphipoda and Isopoda, although they were historically the first ones in which the androgenic gland and the corresponding hormone were respectively described. In this article, we identified the IGFBP-rP1 of isopods and established its implication in the pathway of the AGH with a silencing approach in the model species Armadillidium vulgare. We also showed that this gene is expressed in all the tissues of males and females, with a similar pattern in animals infected with Wolbachia, a feminizing endosymbiont of several isopod species. The expression pattern did not differ during the development of uninfected and infected animals either. We finally studied the evolution of the IGFBP-rP1 in 68 isopod species, looking for conserved motifs and evidence of natural selection. Altogether, our results showed that this gene is constitutively expressed and strongly conserved in isopods, in which it likely constitutes a key element of the insulin/IGF signalling pathway. However, we also illustrated that IGFBP-rP1 is not sufficient on its own to explain the different developmental paths taken by the males and the females or feminized genetic males.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Isópodes/metabolismo , Androgênios , Animais , Feminino , Masculino , Transdução de Sinais
9.
Gen Comp Endocrinol ; 268: 34-39, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055146

RESUMO

The Insulin-like Receptors (IRs) are an important protein family, represented by three members in vertebrates, two of which are well-known for their implication in metabolism (Insulin Receptor) and growth (IGF Receptor). In contrast, little is known about these receptors in invertebrates, in which a single gene generally exists except for a part of insects and other occasional species-specific duplications. In this study, we used publicly available sequences as well as de novo assembled transcriptomes to investigate the IR evolution in malacostracan crustaceans, animals in which the Insulin/IGF pathway is known to be implicated in sexual development through the androgenic gland hormone. We described the evolutionary divergence of malacostracan IRs compared to all the other metazoan sequences, including other pancrustaceans. We also demonstrated two well conserved duplications of IRs: one specific to the whole malacostracan class, another one specific to the decapod order. The potential implications for malacostracan biology are discussed.


Assuntos
Crustáceos/genética , Evolução Molecular , Receptor de Insulina/genética , Vertebrados/genética , Animais , Filogenia , Desenvolvimento Sexual
10.
Genes (Basel) ; 9(6)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890648

RESUMO

In animals, sexual differences between males and females are usually determined by sex chromosomes. Alternatively, sex may also be determined by vertically transmitted intracellular microbial endosymbionts. The best known cytoplasmic sex manipulative endosymbiont is Wolbachia which can, for instance, feminize genetic males into phenotypic females in the terrestrial isopod Armadillidium vulgare. However, the molecular genetic basis of cytoplasmic sex determination is unknown. To identify candidate genes of feminization induced by Wolbachia strain wVulC from A. vulgare, we sequenced the genome of Wolbachia strain wCon from Cylisticus convexus, the most closely related known Wolbachia strain to wVulC that does not induce feminization, and compared it to the wVulC genome. Then, we performed gene expression profiling of the 216 resulting wVulC candidate genes throughout host developmental stages in A. vulgare and the heterologous host C. convexus. We identified a set of 35 feminization candidate genes showing differential expression during host sexual development. Interestingly, 27 of the 35 genes are present in the f element, which is a piece of a feminizing Wolbachia genome horizontally transferred into the nuclear genome of A. vulgare and involved in female sex determination. Assuming that the molecular genetic basis of feminization by Wolbachia and the f element is the same, the 27 genes are candidates for acting as master sex determination genes in A. vulgare females carrying the f element.

11.
Proc Natl Acad Sci U S A ; 113(52): 15036-15041, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27930295

RESUMO

Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Cromossomos Sexuais , Wolbachia/genética , Animais , Evolução Biológica , Cruzamentos Genéticos , Citoplasma/metabolismo , Feminino , Genótipo , Isópodes/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Filogenia , Processos de Determinação Sexual , Razão de Masculinidade , Simbiose
12.
Front Microbiol ; 7: 1484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713732

RESUMO

Antimicrobial peptides (AMPs) are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, there are currently 15 distinct AMP families published so far in the literature, mainly isolated from members of the Decapoda order. Up to now, armadillidin is the sole non-decapod AMP isolated from the haemocytes of Armadillidium vulgare, a crustacean isopod. Its first description demonstrated that armadillidin is a linear glycine-rich (47%) cationic peptide with an antimicrobial activity directed toward Bacillus megaterium. In the present work, we report identification of armadillidin Q, a variant of armadillidin H (earlier known as armadillidin), from crude haemocyte extracts of A. vulgare using LC-MS approach. We demonstrated that both armadillidins displayed broad spectrum antimicrobial activity against several Gram-positive and Gram-negative bacteria, fungi, but were totally inactive against yeasts. Membrane permeabilization assays, only performed with armadillidin H, showed that the peptide is membrane active against bacterial and fungal strains leading to deep changes in cell morphology. This damaging activity visualized by electronic microscopy correlates with a rapid decrease of cell viability leading to highly blebbed cells. In contrast, armadillidin H does not reveal cytotoxicity toward human erythrocytes. Furthermore, no secondary structure could be defined in this study [by circular dichroism (CD) and nuclear magnetic resonance (NMR)] even in a membrane mimicking environment. Therefore, armadillidins represent interesting candidates to gain insight into the biology of glycine-rich AMPs.

13.
Genetica ; 144(2): 223-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26943350

RESUMO

Several microsatellite markers have already been developed for different terrestrial isopod species such as Armadillidium vulgare, A. nasatum and Porcellionides pruinosus. In all these species, the endosymbiont Wolbachia has a feminizing effect that generates a female bias in sex ratio and reduces the number of reproductive males. Thus this can potentially decrease the genetic diversity of host populations. However, in some other isopod species, Wolbachia induces cytoplasmic incompatibility (CI); the most commonly described effect of Wolbachia in arthropods. The CI by rendering some crossings incompatible can reduce the gene flow and strengthen genetic differentiation between isopod populations. To date, the influence of Wolbachia inducing CI on population structure of terrestrial isopods has never been investigated. In this study, we developed 10 polymorphic microsatellite markers shared by two sub-species of Porcellio dilatatus. Crossings between the two sub-species are partially incompatible due to two CI-inducing Wolbachia strains. These new microsatellite markers will allow us to investigate the effect of CI on host genetic differentiation in this species complex.


Assuntos
Variação Genética , Isópodes/genética , Repetições de Microssatélites , Wolbachia , Animais , Feminino , Marcadores Genéticos , Genótipo , Isópodes/microbiologia , Masculino , Filogenia
14.
PLoS One ; 10(6): e0128660, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047139

RESUMO

Reproductive parasites such as Wolbachia are able to manipulate the reproduction of their hosts by inducing parthenogenesis, male-killing, cytoplasmic incompatibility or feminization of genetic males. Despite extensive studies, no underlying molecular mechanism has been described to date. The goal of this study was to establish a system with a single Wolbachia strain that feminizes two different isopod species to enable comparative analyses aimed at elucidating the genetic basis of feminization. It was previously suggested that Wolbachia wVulC, which naturally induces feminization in Armadillidium vulgare, induces the development of female secondary sexual characters in transinfected Cylisticus convexus adult males. However, this does not demonstrate that wVulC induces feminization in C. convexus since feminization is the conversion of genetic males into functional females that occurs during development. Nevertheless, it suggests that C. convexus may represent a feminization model suitable for further development. Knowledge about C. convexus sexual differentiation is also essential for comparative analyses, as feminization is thought to take place just before or during sexual differentiation. Consequently, we first described gonad morphological differentiation of C. convexus and compared it with that of A. vulgare. Then, wVulC was injected into male and female C. convexus adult individuals. The feminizing effect was demonstrated by the combined appearance of female secondary sexual characters in transinfected adult males, as well as the presence of intersexes and female biases in progenies in which wVulC was vertically transmitted from transinfected mothers. The establishment of a new model of feminization of a Wolbachia strain in a heterologous host constitutes a useful tool towards the understanding of the molecular mechanism of feminization.


Assuntos
Feminização , Isópodes/microbiologia , Wolbachia/fisiologia , Animais , Hibridização Genômica Comparativa , Feminino , Gônadas/anatomia & histologia , Gônadas/metabolismo , Gônadas/microbiologia , Isópodes/fisiologia , Masculino , Microscopia , Fenótipo
15.
G3 (Bethesda) ; 5(7): 1317-22, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25911226

RESUMO

Mitochondrial genome structure and organization are relatively conserved among metazoans. However, in many isopods, especially the terrestrial isopods (Oniscidea), the mitochondrial genome consists of both ∼14-kb linear monomers and ∼28-kb circular dimers. This unusual organization is associated with an ancient and conserved constitutive heteroplasmic site. This heteroplasmy affects the anticodon of a tRNA gene, allowing this single locus to function as a "dual" tRNA gene for two different amino acids. Here, we further explore the evolution of these unusual mitochondrial genomes by assembling complete mitochondrial sequences for two additional Oniscidean species, Trachelipus rathkei and Cylisticus convexus. Strikingly, we find evidence of two additional heteroplasmic sites that also alter tRNA anticodons, creating additional dual tRNA genes, and that are conserved across both species. These results suggest that the unique linear/circular organization of isopods' mitochondrial genomes may facilitate the evolution of stable mitochondrial heteroplasmies, and, conversely, once such heteroplasmies have evolved, they constrain the multimeric structure of the mitochondrial genome in these species. Finally, we outline some possible future research directions to identify the factors influencing mitochondrial genome evolution in this group.


Assuntos
Genoma Mitocondrial , Isópodes/genética , RNA de Transferência/genética , Animais , Evolução Molecular , Ordem dos Genes , Anotação de Sequência Molecular , Polimorfismo Genético , Análise de Sequência de DNA
16.
Gene ; 564(1): 81-6, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25813874

RESUMO

Transposable elements (TEs) are DNA pieces that are present in almost all the living world at variable genomic density. Due to their mobility and density, TEs are involved in a large array of genomic modifications. In eukaryotes, TE expression has been studied in detail in several species. In prokaryotes, studies of IS expression are generally linked to particular copies that induce a modification of neighboring gene expression. Here we investigated global patterns of IS transcription in the Alphaproteobacterial endosymbiont Wolbachia wVulC, using both RT-PCR and bioinformatic analyses. We detected several transcriptional promoters in all IS groups. Nevertheless, only one of the potentially functional IS groups possesses a promoter located upstream of the transposase gene, that could lead up to the production of a functional protein. We found that the majority of IS groups are expressed whatever their functional status. RT-PCR analyses indicate that the transcription of two IS groups lacking internal promoters upstream of the transposase start codon may be driven by the genomic environment. We confirmed this observation with the transcription analysis of individual copies of one IS group. These results suggest that the genomic environment is important for IS expression and it could explain, at least partly, copy number variability of the various IS groups present in the wVulC genome and, more generally, in bacterial genomes.


Assuntos
Genoma Bacteriano , Wolbachia/genética , Animais , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Isópodes/microbiologia , Regiões Promotoras Genéticas , Simbiose , Transcrição Gênica
17.
Front Microbiol ; 6: 1388, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733946

RESUMO

Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native) could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i) the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii) the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.

18.
Genome Biol Evol ; 6(10): 2654-64, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25230723

RESUMO

Genomic reduction in bacterial endosymbionts occurs through large genomic deletions and long-term accumulation of mutations. The latter process involves successive steps including gene neutralization, pseudogenization, and gradual erosion until complete loss. Although many examples of pseudogenes at various levels of degradation have been reported, neutralization cases are scarce because of the transient nature of the process. Gene neutralization may occur due to relaxation of selection in nonessential genes, for example, those involved in redundant functions. Here, we report an example of gene neutralization in the homologous recombination (HR) pathway of Wolbachia, a bacterial endosymbiont of arthropods and nematodes. The HR pathway is often depleted in endosymbiont genomes, but it is apparently intact in some Wolbachia strains. Analysis of 12 major HR genes showed that they have been globally under strong purifying selection during the evolution of Wolbachia strains hosted by arthropods, supporting the evolutionary importance of the HR pathway for these Wolbachia genomes. However, we detected signs of recent neutralization of the ruvA gene in a subset of Wolbachia strains, which might be related to an ancestral, clade-specific amino acid change that impaired DNA-binding activity. Strikingly, RuvA is part of the RuvAB complex involved in branch migration, whose function overlaps with the RecG helicase. Although ruvA is experiencing neutralization, recG is under strong purifying selection. Thus, our high phylogenetic resolution suggests that we identified a rare example of targeted neutralization of a gene involved in a redundant function in an endosymbiont genome.


Assuntos
Genoma Bacteriano/genética , Wolbachia/genética , Evolução Molecular , Filogenia , Simbiose/genética , Simbiose/fisiologia
19.
Environ Microbiol ; 16(12): 3583-607, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25052143

RESUMO

The Wolbachia are intracellular endosymbionts widely distributed among invertebrates. These primarily vertically transmitted α-proteobacteria have been intensively studied during the last decades because of their intriguing interactions with hosts, ranging from reproductive manipulations to mutualism. To optimize their vertical transmission from mother to offspring, the Wolbachia have developed fine-tuned strategies. However, the Wolbachia are not restricted to the female gonads and frequently exhibit wide intra-host distributions. This extensive colonization of somatic organs might be necessary for Wolbachia to develop their diverse extended phenotypes. From an endosymbiont's perspective, the within-host environment potentially presents different environmental constraints. Hence, the Wolbachia have to face different intracellular habitats, their host's immune system as well as other microorganisms co-occurring in the same host individual and sometimes even in the same cell. A means for the Wolbachia to protect themselves from these environmental constraints may be to live 'hidden' in vacuoles within host cells. In this review, we summarize the current knowledge regarding the extent of the Wolbachia pandemic and discuss the various environmental constraints these bacteria may have to face within their 'host ecosystem'. Finally, we identify new avenues for future research to better understand the complexity of Wolbachia's interactions with their intracellular environment.


Assuntos
Artrópodes/microbiologia , Nematoides/microbiologia , Simbiose , Wolbachia/fisiologia , Animais , Artrópodes/genética , Artrópodes/imunologia , Ecossistema , Meio Ambiente , Feminino , Gônadas/microbiologia , Interações Microbianas , Nematoides/genética , Nematoides/imunologia , Fenótipo , Wolbachia/crescimento & desenvolvimento
20.
J Invertebr Pathol ; 121: 28-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24984056

RESUMO

In the terrestrial isopod species Porcellio dilatatus, unidirectional Cytoplasmic Incompatibility (CI) between two morphs (P. d. dilatatus and P. d. petiti) caused by a Wolbachia strain (wPet) infecting the morph P. d. petiti has been previously described by experiments initiated four decades ago. Here, we studied another Wolbachia that has been recently detected in a population of the morph P. d. dilatatus. The MLST markers reveal that this Wolbachia is a new strain called wDil distinct from wPet also belonging to the isopod clade of Wolbachia. Quantifications of both Wolbachia strains in the gonads of the two P. dilatatus morphs revealed that all males exhibit similar Wolbachia titers while the titers in females depend on the Wolbachia strain they host. Crossing experiments showed that both wDil and wPet induced partial unidirectional CI with different intensities. Moreover, these two strains induced bidirectional CI when individuals were both infected with one of the two different Wolbachia strains. This way, we demonstrated that P. dilatatus can be infected by two closely related Wolbachia strains (wDil and wPet), that seem to have different modification-rescue systems.


Assuntos
Interações Hospedeiro-Patógeno , Isópodes/microbiologia , Wolbachia/fisiologia , Animais , Cruzamentos Genéticos , Citoplasma , DNA Bacteriano/química , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA