RESUMO
The discovery of safe platforms that can circumvent the endocytic pathway is of great significance for biological therapeutics that are usually degraded during endocytosis. Here we show that a self-assembled and dynamic macrocycle can passively diffuse through the cell membrane and deliver a broad range of biologics, including proteins, CRISPR Cas9, and ssDNA, directly to the cytosol while retaining their bioactivity. Cell-penetrating macrocycle CPM can be easily prepared from the room temperature condensation of diketopyrrolopyrrole lactams with diamines. We attribute the high cellular permeability of CPM to its amphiphilic nature and chameleonic properties. It adopts conformations that partially bury polar groups and expose hydrophobic side chains, thus self-assembling into micellar-like structures. Its superior fluorescence makes CPM trackable inside cells where it follows the endomembrane system. CPM outperformed commercial reagents for biologics delivery and showed high RNA knockdown efficiency of CRISPR Cas9. We envisage that this macrocycle will be an ideal starting point to design and synthesize biomimetic macrocyclic tags that can readily facilitate the interaction and uptake of biomolecules and overcome endosomal digestion.
Assuntos
Sistemas CRISPR-Cas , Citosol , Humanos , Citosol/metabolismo , DNA/química , DNA/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/metabolismo , Proteínas/química , Proteínas/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Células HeLa , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismoRESUMO
Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.
Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Ouro/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Anticorpos de Domínio Único/químicaRESUMO
The COVID-19 pandemic, caused by SARS-CoV-2, has emphasized the necessity for scalable diagnostic workflows using locally produced reagents and basic laboratory equipment with minimal dependence on global supply chains. We introduce an open-source automated platform for high-throughput RNA extraction and pathogen diagnosis, which uses reagents almost entirely produced in-house. This platform integrates our methods for self-manufacturing magnetic nanoparticles and qRT-PCR reagents-both of which have received regulatory approval for clinical use-with an in-house, open-source robotic extraction protocol. It also incorporates our "Nanopore Sequencing of Isothermal Rapid Viral Amplification for Near Real-time Analysis" (NIRVANA) technology, designed for tracking SARS-CoV-2 mutations and variants. The platform exhibits high reproducibility and consistency without cross-contamination, and its limit of detection, sensitivity, and specificity are comparable to commercial assays. Automated NIRVANA effectively identifies circulating SARS-CoV-2 variants. Our in-house, cost-effective reagents, automated diagnostic workflows, and portable genomic surveillance strategies provide a scalable and rapid solution for COVID-19 diagnosis and variant tracking, essential for current and future pandemic responses.
Assuntos
COVID-19 , Sequenciamento por Nanoporos , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Pandemias , Análise Custo-Benefício , Reprodutibilidade dos Testes , Técnicas de Laboratório Clínico/métodos , RNA Viral/genética , RNA Viral/análise , Sensibilidade e Especificidade , GenômicaRESUMO
Quorum quenching (QQ) is the enzymatic degradation of molecules used by bacteria for synchronizing their behavior within communities. QQ has attracted wide attention due to its potential to inhibit biofilm formation and suppress the production of virulence factors. Through its capacity to limit biofouling and infections, QQ has applications in water treatment, aquaculture, and healthcare. Several different QQ enzymes have been described; however, they often lack the high stability and catalytic efficiency required for industrial applications. Previously, we identified genes from genome sequences of Red Sea sediment bacteria encoding potential QQ enzymes. In this study, we report that one of them, named LrsL, is a metallo-ß-lactamase superfamily QQ enzyme with outstanding catalytic features. X-ray crystallography shows that LrsL is a zinc-binding dimer. LrsL has an unusually hydrophobic substrate binding pocket that can accommodate a broad range of acyl-homoserine lactones (AHLs) with exceptionally high affinity. In vitro, LrsL achieves the highest catalytic efficiency reported thus far for any QQ enzyme with a Kcat /KM of 3 × 107. LrsL effectively inhibited Pseudomonas aeruginosa biofilm formation without affecting bacterial growth. Furthermore, LrsL suppressed the production of exopolysaccharides required for biofilm production. These features, and its capacity to regain its function after prolonged heat denaturation, identify LrsL as a robust and unusually efficient QQ enzyme for clinical and industrial applications.
RESUMO
Conventional biosensors rely on the diffusion-dominated transport of the target analyte to the sensor surface. Consequently, they require an incubation step that may take several hours to allow for the capture of analyte molecules by sensor biorecognition sites. This incubation step is a primary cause of long sample-to-result times. Here, alternating current electrothermal flow (ACET) is integrated in an organic electrochemical transistor (OECT)-based sensor to accelerate the device operation. ACET is applied to the gate electrode functionalized with nanobody-SpyCatcher fusion proteins. Using the SARS-CoV-2 spike protein in human saliva as an example target, it is shown that ACET enables protein recognition within only 2 min of sample exposure, supporting its use in clinical practice. The ACET integrated sensor exhibits better selectivity, higher sensitivity, and lower limit of detection than the equivalent sensor with diffusion-dominated operation. The performance of ACET integrated sensors is compared with two types of organic semiconductors in the channel and grounds for device-to-device variations are investigated. The results provide guidelines for the channel material choice in OECT-based biochemical sensors, and demonstrate that ACET integration substantially decreases the detection speed while increasing the sensitivity and selectivity of transistor-based sensors.
Assuntos
Técnicas Biossensoriais , COVID-19 , Técnicas Biossensoriais/métodos , Convecção , Técnicas Eletroquímicas/métodos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Transistores EletrônicosRESUMO
Cell-free transcription and translation systems promise to accelerate and simplify the engineering of proteins, biological circuits and metabolic pathways. Their encapsulation on microfluidic platforms can generate millions of cell-free reactions in picoliter volume droplets. However, current methods struggle to create DNA diversity between droplets while also reaching sufficient protein expression levels. In particular, efficient multi-gene expression has remained elusive. We here demonstrate that co-encapsulation of DNA-coated beads with a defined cell-free system allows high protein expression while also supporting genetic diversity between individual droplets. We optimize DNA loading on commercially available microbeads through direct binding as well as through the sequential coupling of up to three genes via a solid-phase Golden Gate assembly or BxB1 integrase-based recombineering. Encapsulation with an off-the-shelf microfluidics device allows for single or multiple protein expression from a single DNA-coated bead per 14 pL droplet. We envision that this approach will help to scale up and parallelize the rapid prototyping of more complex biological systems.
Assuntos
Técnicas Analíticas Microfluídicas , DNA/genética , Expressão Gênica , Dispositivos Lab-On-A-Chip , MicrofluídicaRESUMO
CRISPR-Cas systems have a great and still largely untapped potential for in vitro applications, in particular, for RNA biosensing. However, there is currently no systematic guide on selecting the most appropriate RNA-targeting CRISPR-Cas system for a given application among thousands of potential candidates. We provide an overview of the currently described Cas effector systems and review existing Cas-based RNA detection methods. We then propose a set of systematic selection criteria for selecting CRISPR-Cas candidates for new applications. Using this approach, we identify four candidates for in vitro RNA.
Assuntos
Sistemas CRISPR-Cas , RNARESUMO
People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences.
Assuntos
Linguagens de Programação , Biologia Sintética , Humanos , IdiomaRESUMO
The coronavirus disease 2019 (COVID-19) pandemic has highlighted the need for rapid and sensitive protein detection and quantification in simple and robust formats for widespread point-of-care applications. Here, we report on nanobody-functionalized organic electrochemical transistors with a modular architecture for the rapid quantification of single-molecule-to-nanomolar levels of specific antigens in complex bodily fluids. The sensors combine a solution-processable conjugated polymer in the transistor channel and high-density and orientation-controlled bioconjugation of nanobody-SpyCatcher fusion proteins on disposable gate electrodes. The devices provide results after 10 min of exposure to 5 µl of unprocessed samples, maintain high specificity and single-molecule sensitivity in human saliva and serum, and can be reprogrammed to detect any protein antigen if a corresponding specific nanobody is available. We used the sensors to detect green fluorescent protein, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) spike proteins, and for the COVID-19 screening of unprocessed clinical nasopharyngeal swab and saliva samples with a wide range of viral loads.
Assuntos
Técnicas Biossensoriais/métodos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Nanotecnologia/métodos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , COVID-19/virologia , Humanos , Anticorpos de Domínio Único/imunologiaRESUMO
The Synthetic Biology Open Language (SBOL) is a community-developed data standard that allows knowledge about biological designs to be captured using a machine-tractable, ontology-backed representation that is built using Semantic Web technologies. While early versions of SBOL focused only on the description of DNA-based components and their sub-components, SBOL can now be used to represent knowledge across multiple scales and throughout the entire synthetic biology workflow, from the specification of a single molecule or DNA fragment through to multicellular systems containing multiple interacting genetic circuits. The third major iteration of the SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model with a focus on real-world applications, based on experience from the deployment of SBOL in a variety of scientific and industrial settings. Here, we introduce the SBOL3 specification both in comparison to previous versions of SBOL and through practical examples of its use.
RESUMO
People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.2 of SBOL Visual, which builds on the prior SBOL Visual 2.1 in several ways. First, the grounding of molecular species glyphs is changed from BioPAX to SBO, aligning with the use of SBO terms for interaction glyphs. Second, new glyphs are added for proteins, introns, and polypeptide regions (e. g., protein domains), the prior recommended macromolecule glyph is deprecated in favor of its alternative, and small polygons are introduced as alternative glyphs for simple chemicals.
Assuntos
Linguagens de Programação , Biologia Sintética , Humanos , IdiomaRESUMO
Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.0.0, which condenses and simplifies previous versions of SBOL based on experiences in deployment across a variety of scientific and industrial settings. In particular, SBOL 3.0.0, (1) separates sequence features from part/sub-part relationships, (2) renames Component Definition/Component to Component/Sub-Component, (3) merges Component and Module classes, (4) ensures consistency between data model and ontology terms, (5) extends the means to define and reference Sub-Components, (6) refines requirements on object URIs, (7) enables graph-based serialization, (8) moves Systems Biology Ontology (SBO) for Component types, (9) makes all sequence associations explicit, (10) makes interfaces explicit, (11) generalizes Sequence Constraints into a general structural Constraint class, and (12) expands the set of allowed constraints.
Assuntos
Linguagens de Programação , Biologia Sintética , Idioma , Modelos Biológicos , SoftwareRESUMO
Synthetic biology emerged in the USA and Europe twenty years ago and quickly developed innovative research and technology as a result of continued funding. Synthetic biology is also growing in many developing countries of Africa, Asia and Latin America, where it could have a large economic impact by helping its use of genetic biodiversity in order to boost existing industries. Starting in 2011, Argentine synthetic biology developed along an idiosyncratic path. In 2011-2012, the main focus was not exclusively research but also on community building through teaching and participation in iGEM, following the template of the early "MIT school" of synthetic biology. In 2013-2015, activities diversified and included society-centered projects, social science studies on synthetic biology and bioart. Standard research outputs such as articles and industrial applications helped consolidate several academic working groups. Since 2016, the lack of a critical mass of researchers and a funding crisis were partially compensated by establishing links with Latin American synthetic biologists and with other socially oriented open technology collectives. The TECNOx community is a central node in this growing research and technology network. The first four annual TECNOx meetings brought together synthetic biologists with other open science and engineering platforms and explored the relationship of Latin American technologies with entrepreneurship, open hardware, ethics and human rights. In sum, the socioeconomic context encouraged Latin American synthetic biology to develop in a meandering and diversifying manner. This revealed alternative ways for growth of the field that may be relevant to other developing countries.
Assuntos
Biologia Sintética/educação , Biologia Sintética/tendências , Argentina , Países em Desenvolvimento , Humanos , América Latina , Características de Residência , Ciências Sociais , Biologia Sintética/métodosRESUMO
People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species . Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.1 of SBOL Visual, which builds on the prior SBOL Visual 2.0 standard by expanding diagram syntax to include methods for showing modular structure and mappings between elements of a system, interactions arrows that can split or join (with the glyph at the split or join indicating either superposition or a chemical process), and adding new glyphs for indicating genomic context (e.g., integration into a plasmid or genome) and for stop codons.
Assuntos
Modelos Biológicos , Linguagens de Programação , Biologia SintéticaRESUMO
Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems is to improve the exchange of information about designed systems between laboratories. The synthetic biology open language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.3.0 of SBOL, which builds upon version 2.2.0 published in last year's JIB Standards in Systems Biology special issue. In particular, SBOL 2.3.0 includes means of succinctly representing sequence modifications, such as insertion, deletion, and replacement, an extension to support organization and attachment of experimental data derived from designs, and an extension for describing numerical parameters of design elements. The new version also includes specifying types of synthetic biology activities, unambiguous locations for sequences with multiple encodings, refinement of a number of validation rules, improved figures and examples, and clarification on a number of issues related to the use of external ontology terms.
Assuntos
Modelos Biológicos , Biologia Sintética , Biologia de Sistemas , Humanos , Linguagens de ProgramaçãoRESUMO
Protein tyrosine kinases (PTKs) are key signaling molecules and important drug targets. Although the efficient recombinant production of active PTKs is important for both pharmaceutical industry and academic research, most PTKs are still obtained from conventional, expensive and time-consuming insect-cell based expression. Host toxicity, kinase inactivity, insolubility and heterogeneity are among the reasons thought to preclude PTK expression in Escherichia coli. Herein we review these presumed roadblocks and their possible solutions for bacterial expression of PTKs, and give an overview on kinase activity assays. Finally, we report our experiences and observations with the kinases Src, Lyn and FAK as examples to illustrate implementation, effects and pitfalls of E. coli expression and in vitro assaying of PTKs.
Assuntos
Proteínas Tirosina Quinases/genética , Animais , Clonagem Molecular/métodos , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Expressão Gênica , Humanos , Modelos Moleculares , Domínios Proteicos , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The synthetic biology open language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.2.0 of SBOL that builds upon version 2.1.0 published in last year's JIB special issue. In particular, SBOL 2.2.0 includes improved description and validation rules for genetic design provenance, an extension to support combinatorial genetic designs, a new class to add non-SBOL data as attachments, a new class for genetic design implementations, and a description of a methodology to describe the entire design-build-test-learn cycle within the SBOL data model.
Assuntos
Modelos Biológicos , Linguagens de Programação , Software , Biologia Sintética/normas , Animais , Guias como Assunto , Humanos , Transdução de SinaisRESUMO
People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.0 of SBOL Visual, which builds on the prior SBOL Visual 1.0 standard by expanding diagram syntax to include functional interactions and molecular species, making the relationship between diagrams and the SBOL data model explicit, supporting families of symbol variants, clarifying a number of requirements and best practices, and significantly expanding the collection of diagram glyphs.
Assuntos
Gráficos por Computador/normas , Modelos Biológicos , Linguagens de Programação , Software , Biologia Sintética/normas , Animais , Guias como Assunto , Humanos , Transdução de SinaisRESUMO
As protein engineering becomes more sophisticated, practitioners increasingly need to share diagrams for communicating protein designs. To this end, we present a draft visual language, Protein Language, that describes the high-level architecture of an engineered protein with easy-to-draw glyphs, intended to be compatible with other biological diagram languages such as SBOL Visual and SBGN. Protein Language consists of glyphs for representing important features (e.g., globular domains, recognition and localization sequences, sites of covalent modification, cleavage and catalysis), rules for composing these glyphs to represent complex architectures, and rules constraining the scaling and styling of diagrams. To support Protein Language we have implemented an extensible web-based software diagram tool, Protein Designer, that uses Protein Language in a "drag and drop" interface for visualization and computer-aided-design of engineered proteins, as well as conversion of annotated protein sequences to Protein Language diagrams and figure export. Protein Designer can be accessed at http://biocad.ncl.ac.uk/protein-designer/ .
Assuntos
Biologia Sintética/métodos , Desenho Assistido por Computador , Modelos Biológicos , Engenharia de Proteínas/métodos , SoftwareRESUMO
The Synthetic Biology Open Language (SBOL) is a community-driven open language to promote standardization in synthetic biology. To support the use of SBOL in metabolic engineering, we developed SBOLme, the first open-access repository of SBOL 2-compliant biochemical parts for a wide range of metabolic engineering applications. The URL of our repository is http://www.cbrc.kaust.edu.sa/sbolme .