Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37831086

RESUMO

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Assuntos
Proteína DEAD-box 58 , Isoleucina , Receptores Imunológicos , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Tolerância Imunológica , Isoleucina/genética , RNA de Cadeia Dupla/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
2.
J Neurochem ; 157(6): 2008-2023, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33638175

RESUMO

N-acetylaspartylglutamate (NAAG) is an abundant neuropeptide in the mammalian nervous system, synthesized by two related NAAG synthetases I and II (NAAGS-I and -II) encoded by the genes Rimklb and Rimkla, respectively. NAAG plays a role in cognition and memory, according to studies using inhibitors of the NAAG hydrolase glutamate carboxypeptidase II that increase NAAG concentration. To examine consequences of reduced NAAG concentration, Rimkla-deficient (Rimkla-/- ) mice were generated. These mice exhibit normal NAAG level at birth, likely because of the intact Rimklb gene, but have significantly reduced NAAG levels in all brain regions in adulthood. In wild type mice NAAGS-II was most abundant in brainstem and spinal cord, as demonstrated using a new NAAGS-II antiserum. In the hippocampus, NAAGS-II was only detectable in neurons expressing parvalbumin, a marker of GABAergic interneurons. Apart from reduced open field activity, general behavior of adult (6 months old) Rimkla-/- mice examined in different tests (dark-light transition, optokinetic behavior, rotarod, and alternating T-maze) was not significantly altered. However, Rimkla-/- mice were impaired in a short-term novel object recognition test. This was also the case for mice lacking NAA synthase Nat8l, which are devoid of NAAG. Together with results from previous studies showing that inhibition of the NAAG degrading enzyme glutamate carboxypeptidase II is associated with a significant improvement in object recognition, these results suggest a direct involvement of NAAG synthesized by NAAGS-II in the memory consolidation underlying the novel object recognition task.


Assuntos
Dipeptídeos/deficiência , Dipeptídeos/genética , Ligases/deficiência , Ligases/genética , Aprendizagem em Labirinto/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Glutamato Carboxipeptidase II/deficiência , Glutamato Carboxipeptidase II/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA