Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Phys ; 20(5): 815-821, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799981

RESUMO

Approaches to developing large-scale superconducting quantum processors must cope with the numerous microscopic degrees of freedom that are ubiquitous in solid-state devices. State-of-the-art superconducting qubits employ aluminium oxide (AlOx) tunnel Josephson junctions as the sources of nonlinearity necessary to perform quantum operations. Analyses of these junctions typically assume an idealized, purely sinusoidal current-phase relation. However, this relation is expected to hold only in the limit of vanishingly low-transparency channels in the AlOx barrier. Here we show that the standard current-phase relation fails to accurately describe the energy spectra of transmon artificial atoms across various samples and laboratories. Instead, a mesoscopic model of tunnelling through an inhomogeneous AlOx barrier predicts percent-level contributions from higher Josephson harmonics. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The presence and impact of Josephson harmonics has important implications for developing AlOx-based quantum technologies including quantum computers and parametric amplifiers. As an example, we show that engineered Josephson harmonics can reduce the charge dispersion and associated errors in transmon qubits by an order of magnitude while preserving their anharmonicity.

2.
ACS Appl Energy Mater ; 7(10): 4394-4401, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38817849

RESUMO

CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely Ge1-xSnx alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for Ge0.88Sn0.12 alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit ZT for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C-100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.

3.
Materials (Basel) ; 17(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591412

RESUMO

We fabricated high-quality c-axis-oriented epitaxial YBa2Cu3O7-x films with 15% of the yttrium atoms replaced by terbium (YTBCO) and studied their electrical properties. The Tb substitution reduced the charge carrier density, resulting in increased resistivity and decreased critical current density compared to pure YBa2Cu3O7-x films. The electrical properties of the YTBCO films showed an in-plane anisotropy in both the superconducting and normal states that, together with the XRD data, provided evidence for, at least, a partially twin-free film. Unexpectedly, the resistive transition of the bridges also demonstrated the in-plane anisotropy that could be explained within the framework of Tinkham's model of resistive transition and the Berezinskii-Kosterlitz-Thouless (BKT) model, depending on the sample parameters. Measurements of the differential resistance in the temperature range of the resistive transition confirmed the occurrence of the BKT transition in the YTBCO bridges. Therefore, we consider the YTBCO films to be a promising platform for both the fabrication of devices with high kinetic inductance and fundamental research on the BKT transition in cuprate superconductors.

4.
ACS Appl Mater Interfaces ; 16(8): 11035-11042, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38377460

RESUMO

Core-only InAs nanowires (NWs) remain of continuing interest for application in modern optical and electrical devices. In this paper, we utilize the II-VI semiconductor CdSe as a shell for III-V InAs NWs to protect the electron transport channel in the InAs core from surface effects. This unique material configuration offers both a small lattice mismatch between InAs and CdSe and a pronounced electronic confinement in the core with type-I band alignment at the interface between both materials. Under optimized growth conditions, a smooth interface between the core and shell is obtained. Atom probe tomography (APT) measurements confirm substantial diffusion of In into the shell, forming a remote n-type doping of CdSe. Moreover, field-effect transistors (FETs) are fabricated, and the electron transport characteristics in these devices is investigated. Finally, band structure simulations are performed and confirm the presence of an electron transport channel in the InAs core that, at higher gate voltages, extends into the CdSe shell region. These results provide a promising basis toward the application of hybrid III-V/II-VI core/shell nanowires in modern electronics.

5.
ACS Nano ; 18(1): 571-580, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126781

RESUMO

The proximity effect at a highly transparent interface of an s-wave superconductor (S) and a topological insulator (TI) provides a promising platform to create Majorana zero modes in artificially designed heterostructures. However, structural and chemical issues pertinent to such interfaces have been poorly explored so far. Here, we report the discovery of Pd diffusion-induced polarization at interfaces between superconductive Pd1+x(Bi0.4Te0.6)2 (xPBT, 0 ≤ x ≤ 1) and Pd-intercalated Bi2Te3 by using atomic-resolution scanning transmission electron microscopy. Our quantitative image analysis reveals that nanoscale lattice strain and QL polarity synergistically suppress and promote Pd diffusion at the normal and parallel interfaces, formed between Te-Pd-Bi triple layers (TLs) and Te-Bi-Te-Bi-Te quintuple layers (QLs), respectively. Further, our first-principles calculations unveil that the superconductivity of the xPBT phase and topological nature of the Pd-intercalated Bi2Te3 phase are robust against the broken inversion symmetry. These findings point out the necessity of considering the coexistence of electric polarization with superconductivity and topology in such S-TI systems.

6.
Nanomaterials (Basel) ; 13(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513154

RESUMO

Over the past three decades, the growth of Bi thin films has been extensively explored due to their potential applications in various fields such as thermoelectrics, ferroelectrics, and recently for topological and neuromorphic applications, too. Despite significant research efforts in these areas, achieving reliable and controllable growth of high-quality Bi thin-film allotropes has remained a challenge. Previous studies have reported the growth of trigonal and orthorhombic phases on various substrates yielding low-quality epilayers characterized by surface morphology. In this study, we present a systematic growth investigation, enabling the high-quality growth of Bi epilayers on Bi-terminated Si (111) 1 × 1 surfaces using molecular beam epitaxy. Our work yields a phase map that demonstrates the realization of trigonal, orthorhombic, and pseudocubic thin-film allotropes of Bi. In-depth characterization through X-ray diffraction (XRD) techniques and scanning transmission electron microscopy (STEM) analysis provides a comprehensive understanding of phase segregation, phase stability, phase transformation, and phase-dependent thickness limitations in various Bi thin-film allotropes. Our study provides recipes for the realization of high-quality Bi thin films with desired phases, offering opportunities for the scalable refinement of Bi into quantum and neuromorphic devices and for revisiting technological proposals for this versatile material platform from the past 30 years.

7.
ACS Appl Mater Interfaces ; 15(29): 35321-35331, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432886

RESUMO

This paper explores the optical properties of an exfoliated MoSe2 monolayer implanted with Cr+ ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe2 reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterized by nonzero activation energy, long lifetimes, and weak response to the magnetic field. To rationalize the experimental results and get insights into the atomic structure of the defects, we modeled the Cr-ion irradiation process using ab initio molecular dynamics simulations followed by the electronic structure calculations of the system with defects. The experimental and theoretical results suggest that the recombination of electrons on the acceptors, which could be introduced by the Cr implantation-induced defects, with the valence band holes is the most likely origin of the low-energy emission. Our results demonstrate the potential of low-energy ion implantation as a tool to tailor the properties of two-dimensional (2D) materials by doping.

8.
Nano Lett ; 23(14): 6347-6353, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37399545

RESUMO

We present low-temperature magnetotransport measurements on selectively grown Sb2Te3-based topological insulator ring structures. These devices display clear Aharonov-Bohm oscillations in the conductance originating from phase-coherent transport around the ring. The temperature dependence of the oscillation amplitude indicates that the Aharonov-Bohm oscillations originate from ballistic transport along the ring arms. We attribute these oscillations to the topological surface states. Further insight into the phase coherence is gained by comparing with similar Aharonov-Bohm-type oscillations in topological insulator nanoribbons exposed to an axial magnetic field. Here, quasi-ballistic phase-coherent transport is confirmed for closed-loop topological surface states in the transverse direction enclosing the nanoribbon. In contrast, the appearance of universal conductance fluctuations indicates phase-coherent transport in the diffusive regime, which is attributed to bulk carrier transport. Thus, it appears that even in the presence of diffusive p-type charge carriers in Aharonov-Bohm ring structures, phase-coherent quasi-ballistic transport of topological surface states is maintained over long distances.

9.
ACS Appl Electron Mater ; 5(4): 2268-2275, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37124237

RESUMO

Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1-x Sn x alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1-x Sn x layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1-x Sn x layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.

10.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839091

RESUMO

Topological insulator (TI) nanoribbons with proximity-induced superconductivity are a promising platform for Majorana bound states (MBSs). In this work, we consider a detailed modeling approach for a TI nanoribbon in contact with a superconductor via its top surface, which induces a superconducting gap in its surface-state spectrum. The system displays a rich phase diagram with different numbers of end-localized MBSs as a function of chemical potential and magnetic flux piercing the cross section of the ribbon. These MBSs can be robust or fragile upon consideration of electrostatic disorder. We simulate a tunneling spectroscopy setup to probe the different topological phases of top-proximitized TI nanoribbons. Our simulation results indicate that a top-proximitized TI nanoribbon is ideally suited for realizing fully gapped topological superconductivity, in particular when the Fermi level is pinned near the Dirac point. In this regime, the setup yields a single pair of MBSs, well separated at opposite ends of the proximitized ribbon, which gives rise to a robust quantized zero-bias conductance peak.

11.
Nanomaterials (Basel) ; 13(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678045

RESUMO

In this paper, in an in situ prepared three-terminal Josephson junction based on the topological insulator Bi4Te3 and the superconductor Nb the transport properties are studied. The differential resistance maps as a function of two bias currents reveal extended areas of Josephson supercurrent, including coupling effects between adjacent superconducting electrodes. The observed dynamics for the coupling of the junctions is interpreted using a numerical simulation of a similar geometry based on a resistively and capacitively shunted Josephson junction model. The temperature dependency indicates that the device behaves similar to prior experiments with single Josephson junctions comprising topological insulators' weak links. Irradiating radio frequencies to the junction, we find a spectrum of integer Shapiro steps and an additional fractional step, which is interpreted with a skewed current-phase relationship. In a perpendicular magnetic field, we observe Fraunhofer-like interference patterns in the switching currents.

12.
Nanomaterials (Basel) ; 13(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36678107

RESUMO

Quasi-one-dimensional (1D) topological insulators hold the potential of forming the basis of novel devices in spintronics and quantum computing. While exposure to ambient conditions and conventional fabrication processes are an obstacle to their technological integration, ultra-high vacuum lithography techniques, such as selective area epitaxy (SAE), provide all the necessary ingredients for their refinement into scalable device architectures. In this work, high-quality SAE of quasi-1D topological insulators on templated Si substrates is demonstrated. After identifying the narrow temperature window for selectivity, the flexibility and scalability of this approach is revealed. Compared to planar growth of macroscopic thin films, selectively grown regions are observed to experience enhanced growth rates in the nanostructured templates. Based on these results, a growth model is deduced, which relates device geometry to effective growth rates. After validating the model experimentally for various three-dimensional topological insulators (3D TIs), the crystal quality of selectively grown nanostructures is optimized by tuning the effective growth rates to 5 nm/h. The high quality of selectively grown nanostructures is confirmed through detailed structural characterization via atomically resolved scanning transmission electron microscopy (STEM).

13.
ACS Nano ; 16(9): 14582-14589, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36095839

RESUMO

Isolated impurity states in epitaxially grown semiconductor systems possess important radiative features such as distinct wavelength emission with a very short radiative lifetime and low inhomogeneous broadening, which make them promising for the generation of indistinguishable single photons. In this study, we investigate chlorine-doped ZnSe/ZnMgSe quantum well (QW) nanopillar (NP) structures as a highly efficient solid-state single-photon source operating at cryogenic temperatures. We show that single photons are generated due to the radiative recombination of excitons bound to neutral Cl atoms in ZnSe QW and the energy of the emitted photon can be tuned from about 2.85 down to 2.82 eV with ZnSe well width increase from 2.7 to 4.7 nm. Following the developed advanced technology, we fabricate NPs with a diameter of about 250 nm using a combination of dry and wet-chemical etching of epitaxially grown ZnSe/ZnMgSe QW structures. The remaining resist mask serves as a spherical- or cylindrical-shaped solid immersion lens on top of NPs and leads to the emission intensity enhancement by up to an order of magnitude in comparison to the pillars without any lenses. NPs with spherical-shaped lenses show the highest emission intensity values. The clear photon-antibunching effect is confirmed by the measured value of the second-order correlation function at a zero time delay of 0.14. The developed single-photon sources are suitable for integration into scalable photonic circuits.

14.
Nano Lett ; 22(7): 2595-2602, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35235321

RESUMO

The integration of semiconductor Josephson junctions (JJs) in superconducting quantum circuits provides a versatile platform for hybrid qubits and offers a powerful way to probe exotic quasiparticle excitations. Recent proposals for using circuit quantum electrodynamics (cQED) to detect topological superconductivity motivate the integration of novel topological materials in such circuits. Here, we report on the realization of superconducting transmon qubits implemented with (Bi0.06Sb0.94)2Te3 topological insulator (TI) JJs using ultrahigh vacuum fabrication techniques. Microwave losses on our substrates, which host monolithically integrated hardmasks used for the selective area growth of TI nanostructures, imply microsecond limits to relaxation times and, thus, their compatibility with strong-coupling cQED. We use the cavity-qubit interaction to show that the Josephson energy of TI-based transmons scales with their JJ dimensions and demonstrate qubit control as well as temporal quantum coherence. Our results pave the way for advanced investigations of topological materials in both novel Josephson and topological qubits.

15.
ACS Appl Mater Interfaces ; 13(27): 32005-32012, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34171195

RESUMO

Artificial synapses based on ferroelectric Schottky barrier field-effect transistors (FE-SBFETs) are experimentally demonstrated. The FE-SBFETs employ single-crystalline NiSi2 contacts with an atomically flat interface to Si and Hf0.5Zr0.5O2 ferroelectric layers on silicon-on-insulator substrates. The ferroelectric polarization switching dynamics gradually modulate the NiSi2/Si Schottky barriers and the potential of the channel, thus programming the device conductance with input voltage pulses. The short-term synaptic plasticity is characterized in terms of excitatory/inhibitory post-synaptic current (EPSC) and paired-pulse facilitation/depression. The EPSC amplitude shows a linear response to the amplitude of the pre-synaptic spike. Very low energy/spike consumption as small as ∼2 fJ is achieved, demonstrating high energy efficiency. Long-term potentiation/depression results show very high endurance and very small cycle-to-cycle variations (∼1%) after 105 pulse measurements. Furthermore, spike-timing-dependent plasticity is also emulated using the gate voltage pulse as the pre-synaptic spike and the drain voltage pulse as the post-synaptic spikes. These findings indicate that FE-SBFET synapses have high potential for future neuromorphic computing applications.


Assuntos
Biomimética/instrumentação , Sinapses/metabolismo , Transistores Eletrônicos , Condutividade Elétrica , Níquel/química , Silício/química
16.
Sci Adv ; 7(26)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34162537

RESUMO

In Josephson junctions, a supercurrent across a nonsuperconducting weak link is carried by electron-hole bound states. Because of the helical spin texture of nondegenerate topological surface states, gapless bound states are established in junctions with topological weak link. These have a characteristic 4π-periodic current phase relation (CΦR) that leads to twice the conventional Shapiro step separation voltage in radio frequency-dependent measurements. In this context, we identify an attenuated first Shapiro step in (Bi0.06Sb0.94)2Te3 (BST) Josephson junctions with AlO x capping layer. We further investigate junctions on narrow, selectively deposited BST nanoribbons, where surface charges are confined to the perimeter of the nanoribbon. Within these junctions, previously identified signatures of gapless bound states are absent. Because of confinement, transverse momentum sub-bands are quantized and a topological gap opening is observed. Surface states within these quantized sub-bands are spin degenerate, which evokes bound states of conventional 2π-periodic CΦR within the BST nanoribbon weak link.

17.
Nat Commun ; 12(1): 754, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531502

RESUMO

Despite the fact that GeTe is known to be a very interesting material for applications in thermoelectrics and for phase-change memories, the knowledge on its low-temperature transport properties is only limited. We report on phase-coherent phenomena in the magnetotransport of GeTe nanowires. From universal conductance fluctuations measured on GeTe nanowires with Au contacts, a phase-coherence length of about 280 nm at 0.5 K is determined. The distinct phase-coherence is confirmed by the observation of Aharonov-Bohm type oscillations for parallel magnetic fields. We interpret the occurrence of these magnetic flux-periodic oscillations by the formation of a tubular hole accumulation layer. For Nb/GeTe-nanowire/Nb Josephson junctions we obtained a critical current of 0.2 µA at 0.4 K. By applying a perpendicular magnetic field the critical current decreases monotonously with increasing field, whereas in a parallel field the critical current oscillates with a period of the magnetic flux quantum confirming the presence of a tubular hole channel.

18.
Nanoscale Adv ; 3(5): 1413-1421, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132855

RESUMO

Josephson junctions based on InAs semiconducting nanowires and Nb superconducting electrodes are fabricated in situ by a special shadow evaporation scheme for the superconductor electrode. Compared to other metallic superconductors such as Al, Nb has the advantage of a larger superconducting gap which allows operation at higher temperatures and magnetic fields. Our junctions are fabricated by shadow evaporation of Nb on pairs of InAs nanowires grown selectively on two adjacent tilted Si (111) facets and crossing each other at a small distance. The upper wire relative to the deposition source acts as a shadow mask determining the gap of the superconducting electrodes on the lower nanowire. Electron microscopy measurements show that the fully in situ fabrication method gives a clean InAs/Nb interface. A clear Josephson supercurrent is observed in the current-voltage characteristics, which can be controlled by a bottom gate. The large excess current indicates a high junction transparency. Under microwave radiation, pronounced integer Shapiro steps are observed suggesting a sinusoidal current-phase relation. Owing to the large critical field of Nb, the Josephson supercurrent can be maintained to magnetic fields exceeding 1 T. Our results show that in situ prepared Nb/InAs nanowire contacts are very interesting candidates for superconducting quantum circuits requiring large magnetic fields.

19.
Sci Rep ; 10(1): 21806, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311564

RESUMO

The interface between topological and normal insulators hosts metallic states that appear due to the change in band topology. While topological states at a surface, i.e., a topological insulator-air/vacuum interface, have been studied intensely, topological states at a solid-solid interface have been less explored. Here we combine experiment and theory to study such embedded topological states (ETSs) in heterostructures of GeTe (normal insulator) and [Formula: see text] [Formula: see text] (topological insulator). We analyse their dependence on the interface and their confinement characteristics. First, to characterise the heterostructures, we evaluate the GeTe-Sb[Formula: see text]Te[Formula: see text] band offset using X-ray photoemission spectroscopy, and chart the elemental composition using atom probe tomography. We then use first-principles to independently calculate the band offset and also parametrise the band structure within a four-band continuum model. Our analysis reveals, strikingly, that under realistic conditions, the interfacial topological modes are delocalised over many lattice spacings. In addition, the first-principles calculations indicate that the ETSs are relatively robust to disorder and this may have practical ramifications. Our study provides insights into how to manipulate topological modes in heterostructures and also provides a basis for recent experimental findings [Nguyen et al. Sci. Rep. 6, 27716 (2016)] where ETSs were seen to couple over thick layers.

20.
Opt Express ; 28(18): 27000-27012, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906962

RESUMO

The potential of extreme ultraviolet (EUV) computational proximity lithography for fabrication of arbitrary nanoscale patterns is investigated. We propose to use a holographic mask (attenuating phase shifting mask) consisting of structures of two phase levels. This approach allows printing of arbitrary, non-periodic structures without using high-resolution imaging optics. The holographic mask is designed for a wavelength of 13.5 nm with a conventional high-resolution electron beam resist as the phase shifting medium (pixel size 50 nm). The imaging performance is evaluated by using EUV radiation with different degrees of spatial coherence. Therefore exposures on identical masks are carried out with both undulator radiation at a synchrotron facility and plasma-based radiation at a laboratory setup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA