Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(6): 6569-6577, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371825

RESUMO

Brazil, the largest global sugar cane producer, utilizes approximately 10 million hectares for cultivation. However, the increased use of agrochemicals in this industry raises concerns about environmental and human health impacts. Inclusively, ametryn (AMT), a pesticide intensively used in sugar cane plantations, has been detected in several water matrices at concerning levels, which evidences the urgent need for the development of technologies capable of removing this pesticide from the environment. This study investigated the removal efficiency of AMT from aquatic environments via oxidation promoted by persulfate (PS) activation mediated by carbon-based materials, such as graphene, carbon nanotubes, and activated carbon. Granular activated carbon (GAC) emerged as the most suitable material due to its clear catalytic role. A central composite design was used to evaluate and optimize the factors influencing AMT degradation and mineralization, revealing that the initial PS concentration and GAC dosage strongly impact the degradation rate and organic carbon removal in different directions. GAC was submitted to surface functionalization with N- and O-precursors to investigate how this impacts PS activation, and positive enhancements were noted with the latter, with a mineralization degree 9% superior. Experiments with real water matrices evidence the impact of other water constituents on the degradation rate of the target pollutant (k'300), which was reduced by half when performed in groundwater. Notwithstanding, the system still demonstrated a consistent capacity to remove organic content, ranging from 60 to 50% TOCremoval, regardless of the water matrix, indicating that the system might be effective in real contamination scenarios. This research highlights the potential of GAC and its modified version for remediation of AMT-contaminated water remediation.

3.
Chemosphere ; 299: 134379, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339520

RESUMO

Crumb rubber derived from end-of-life tires (ELTs) is frequently used as infill of synthetic turf pitches, promoting circular economy. Although important to reduce the accumulation of waste, the use of recycled ELTs can be a problem to human health and the environment, both by direct contact during pitch use and by the release of these elements to the surroundings, mostly via volatilization and leaching. The present study aimed to evaluate the distribution of metals in ELT-derived crumb rubber collected in artificial turf worldwide and assess possible trends by country, pitch age and type (indoor vs. outdoor). The concentration ranges observed are very wide, especially in outdoor fields and for the most abundant metals, namely Zn (2989-5246 mg/kg), Fe (196-5194 mg/kg), Mg (188-1795 mg/kg) and Al (159-1882 mg/kg). For Zn, the levels were mostly above the safe limits set in European directives for relatable matrices (soils and toy materials), and the same happened for Pb, a much more toxic metal at lower concentrations. A multi-pathway human exposure study was also performed, and the risk assessment shows non-carcinogenic and carcinogenic risks from accidental crumb rubber ingestion (with Cr and Pb as major contributors) above the acceptable values for all the receptors except adult bystanders, with a higher significance to younger individuals. These results bring a different perspective regarding most of the studies reporting low risks related with exposure to metals in crumb rubber.


Assuntos
Metaloides , Metais Pesados , Adulto , Humanos , Chumbo , Reciclagem , Medição de Risco , Borracha/toxicidade
4.
Water Res ; 209: 117932, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34902759

RESUMO

Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.

5.
Water Res ; 201: 117374, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214892

RESUMO

Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.


Assuntos
Purificação da Água , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Genes Bacterianos , Águas Residuárias
6.
Environ Sci Pollut Res Int ; 28(19): 24057-24066, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33420930

RESUMO

The presence of toxic chlorinated compounds in drinking water, generated during the disinfection step in water treatment plants, is of great concern for public health. In the present study, the performance of the UVC/H2O2 process, preceded by zero-valent-copper reduction, was evaluated for degrading 2,4,6-trichlorophenol (TCP). With this aim, the oxidation performed alone or in combination with the pre-reductive step was evaluated regarding TCP concentration over time, removal rate, mineralization, and toxicity to Vibrio fischeri, as well as oxidant dosage and the effect of water matrix. The UV/H2O2 process achieved fast (kobs = 1.4 min-1) and complete TCP degradation, as well as important mineralization (40.4%), with best results obtained for initial H2O2 concentration of 0.056 mmol L-1. Coupling of reductive and oxidative processes intensified contaminant mineralization, due to the synergistic effect of copper ions leached in the reductive process, particularly Cu(I), providing an additional route of H2O2 activation for generating HO• radicals (photo-Fenton-like process). High toxicity removals and increased mineralization could be successfully accomplished by the combined processes even in tap water, which is a clear advantage for practical application.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Clorofenóis , Cobre , Peróxido de Hidrogênio , Oxirredução , Raios Ultravioleta , Água
7.
Environ Sci Pollut Res Int ; 27(18): 22214-22224, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32124285

RESUMO

Conventional wastewater treatments are not efficient in removing parabens, which may thus end up in surface waters, posing a threat to aquatic biota and human health. As an alternative treatment, persulfate (PS)-driven advanced oxidation technologies have gained growing attention for removing these pollutants. In this study, the degradation of propylparaben (PrP) by UVA- and zero-valent iron (ZVI)-activated persulfate was investigated. The effects of initial PS concentration ([PS]0) and irradiance or ZVI concentration were explored using the Doehlert experimental design. For the UVA-activated system, the specific PrP degradation rate (k) and percent removal were consistently higher for increasing [PS]0 and irradiance, varying in the ranges 0.0053-0.0192 min-1 and 37.9-77.3%, respectively. In contrast, extremely fast PrP degradation was achieved through the ZVI/PS process (0.3304 < k < 0.9212 min-1), with removal percentages above 97.5%; in this case, paraben degradation was hindered for a ZVI dosage beyond 40 mg L-1. Regarding toxicity, ECOSAR predictions suggest that the degradation products elucidated by LC-MS/MS are less toxic than PrP toward fish, daphnid, and green algae. In addition, both processes showed to be strongly dependent on the water matrix, being ZVI/PS more impacted for a MBR effluent, although its performance was much better than that exhibited by the UVA-driven process (t1/2 of 65.4 and 276.1 min, respectively).


Assuntos
Ferro , Poluentes Químicos da Água , Cromatografia Líquida , Oxirredução , Parabenos , Espectrometria de Massas em Tandem
8.
Chemosphere ; 244: 125461, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31816552

RESUMO

The degradation of highly toxic and persistent chlorinated organic compounds by zerovalent metals (ZVMs) has received considerable attention for in situ groundwater remediation. Due to its abundance and low toxicity, iron has been mostly applied for such purposes, despite several limitations, such as rapid surface passivation and little efficacy towards certain contaminants. Given that, we evaluated monometallic zerovalent iron (ZVI), copper (ZVC) and zinc (ZVZ), and bimetallic copper-coated ZVI (ZVI/Cu) and ZVZ (ZVZ/Cu) for anoxic reductive degradation of chlorpyrifos (CP). Two approaches to enhance metal reactivity were investigated: the synthesis of bimetallic particles with copper and the comparison between micro and nanoparticles. All of the tested monometallic and bimetallic particles dechlorinated the target molecule, although complete chlorine removal was not achieved by any metal during the 30-d treatment period. Coating the zerovalent monometallic particles with copper enhanced reactivity. Reactivity was ZVC > ZVZ > ZVI for monometallic particles and ZVZ/Cu > ZVI/Cu for bimetallic microparticles. The analysis of the degradation products indicated the presence of dechlorinated compounds as well as 3,5,6-trichloro-2-pyridinol, a hydrolysis product.


Assuntos
Clorpirifos/química , Poluentes Químicos da Água/química , Cloro , Cobre , Recuperação e Remediação Ambiental , Água Subterrânea , Ferro , Modelos Químicos , Compostos Orgânicos
9.
Artigo em Inglês | MEDLINE | ID: mdl-31328643

RESUMO

The herbicide amicarbazone (AMZ), which appeared as a possible alternative to atrazine, presents moderate environmental persistence and is unlikely to be removed by conventional water treatment techniques. Advanced oxidation processes (AOPs) driven by •OH and/or SO4•- radicals are then promising alternatives to AMZ-contaminated waters remediation, even though, in some cases, they can originate more toxic degradation products than the parent-compound. Therefore, assessing treated solutions toxicity prior to disposal is of extreme importance. In this study, the toxicity of AMZ solutions, before and after treatment with different •OH-driven and SO4•--driven AOPs, was evaluated for five different microorganisms: Vibrio fischeri, Chlorella vulgaris, Tetrahymena thermophila, Escherichia coli, and Bacillus subtilis. In general, the toxic response of AMZ was greatly affected by the addition of reactants, especially when persulfate (PS) and/or Fe(III)-carboxylate complexes were added. The modifications of this response after treatment were correlated with AMZ intermediates, which were identified by mass spectrometry. Thus, low molecular weight by-products, resulting from fast degradation kinetics, were associated with increased toxicity to bacteria and trophic effects to microalgae. These observations were compared with toxicological predictions given by a Structure-Activity Relationships software, which revealed to be fairly compatible with our empirical findings.


Assuntos
Radical Hidroxila/química , Sulfatos/química , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos , Aliivibrio fischeri/efeitos dos fármacos , Chlorella vulgaris/efeitos dos fármacos , Compostos Férricos/química , Cinética , Oxirredução , Triazóis/análise , Poluentes Químicos da Água/análise
10.
Environ Sci Pollut Res Int ; 25(6): 5474-5483, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29214480

RESUMO

Alarming amounts of organic pollutants are being detected in waterbodies due to their ineffective removal by conventional treatment techniques, which warn of the urgent need of developing new technologies for their remediation. In this context, advanced oxidation processes (AOPs), especially those based on Fenton reactions, have proved to be suitable alternatives, due to their efficacy of removing persistent organic compounds. However, the use of ferrous iron in these processes has several operational constraints; to avoid this, an alternative iron source was here investigated: zero-valent-iron (ZVI). A Fenton-like process based on the activation of a recently explored oxidant-persulfate (PS)-with ZVI was applied to degrade an emerging contaminant: Amicarbazone (AMZ). The influence of ZVI size and source, PS/ZVI ratio, pH, UVA radiation, dissolved O2, and inorganic ions was evaluated in terms of AMZ removal efficiency. So far, this is the first time these parameters are simultaneously investigated, in the same study, to evaluate a ZVI-activated PS process. The radical mechanism was also explored and two radical scavengers were used to determine the identity of major active species taking part in the degradation of AMZ. The degradation efficiency was found to be strongly affected by the ZVI dosage, while positively affected by the PS concentration. The PS/ZVI system enabled AMZ degradation in a wide range of pH, although with a lower efficiency under slightly alkaline conditions. Dissolved O2 revealed to play an important role in reaction kinetics as well as the presence of inorganic ions. UVA radiation seems to improve the degradation kinetics only in the presence of extra O2 content. Radicals quenching experiments indicated that both sulfate (SO4•-) and hydroxyl (•OH) radicals contributed to the overall oxidation performance, but SO4•- was the dominant oxidative species.


Assuntos
Ferro/química , Sulfatos/química , Triazóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Cinética , Oxirredução , Triazóis/química , Poluentes Químicos da Água/química
11.
Chemosphere ; 184: 981-991, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28658741

RESUMO

Photochemical redox reactions of Fe(III) complexes in surface waters are important sources of radical species, therefore contributing to the sunlight-driven elimination of waterborne recalcitrant contaminants. In this study, the effects of three Fe(III)-carboxylates (i.e., oxalate, citrate, and tartrate) on the UVA photoinduced oxidation of the herbicide amicarbazone (AMZ) were investigated. A Doehlert experimental design was applied to find the Fe(III):ligand ratios and pH that achieved the fastest AMZ degradation rate. The results indicated optimal ratios of 1:10 (Fe(III):oxalate), 1:4 (Fe(III):citrate), and 1:1 (Fe(III):tartrate), with the [Fe(III)]0 set at 0.1 mmol L-1 and the best pH found to be 3.5 for all the complexes. In addition, a statistical model that predicts the observed degradation rate constant (kobs) as a function of pH and Fe(III):carboxylate ratio was obtained for each complex, enabling AMZ-photodegradation predictions based on these two variables. To the best of our knowledge, this is the first time that such models are proposed. Not only the pH-dependent speciation of Fe(III) in solution but also the time profiles of photogenerated OH, Fe(II), and H2O2 gave appropriate support to the experimental results. Additional experiments using a sampled sewage treatment plant effluent suggest that the addition of aqua and/or Fe(III)-oxalate complexes to the matrix may also be effective for AMZ removal from natural waters in case their natural occurrence is not high enough to promote pollutant degradation. Therefore, the inclusion of Fe(III)-complexes in investigations dealing with the environmental fate of emerging pollutants in natural waterbodies is strongly recommended.


Assuntos
Compostos Férricos/química , Modelos Químicos , Fotólise , Poluentes Químicos da Água/química , Ácidos Carboxílicos , Citratos , Ácido Cítrico/química , Peróxido de Hidrogênio/química , Oxalatos/química , Oxirredução , Projetos de Pesquisa , Luz Solar , Água/química , Poluentes Químicos da Água/análise
12.
Org Biomol Chem ; 12(20): 3181-90, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24723199

RESUMO

Folic acid targeting by functionalization of the terminal γ-carboxylic acid is one of the most important strategies to selectively deliver chemotherapeutics and dyes to cancer cells which overexpress folate receptors. However, conjugation of folic acid is limited by its unique solubility and by selectivity issues imposing the need for expensive preparative reverse-phase chromatographic purification to isolate γ-folate conjugates. Herein is provided a novel synthetic tool for the synthesis of new folic acid conjugates with excellent γ-purity based on strain-promoted alkyne-azide cycloadditions with a γ-folate-cyclooctyne conjugate 3. To demonstrate the potential of this methodology several new folate conjugates were synthesized with high γ-purity and without using any type of chromatographic purification by reacting conjugate 3 with several fluorescent probes, polymers and siliceous materials bearing azide. In addition, the cycloaddition reaction between conjugate 3 and an azido-derived fluorescent dye was successfully performed in cellular media leading to an increase of fluorescence in the cells which overexpress folate receptors (NCI-H460).


Assuntos
Química Click/métodos , Ácido Fólico/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Etanolamina/química , Células HEK293 , Humanos , Microscopia Confocal , Espectrometria de Fluorescência
13.
J Phys Chem B ; 117(45): 14108-14, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24134507

RESUMO

Fluorescent ionic liquids (FILs) incorporating the fluorescein anion have been prepared by anion exchange of the parent quaternary ammonium chloride (Quat(+)Cl(-)) ionic liquid. By controlling the molar ratio of fluorescein to Quat(+)Cl(-), ionic liquids incorporating different prototropic forms of fluorescein were prepared. The 1:1 molar ratio ionic liquid (FIL1) is essentially composed of monoanionic fluorescein, while dianionic fluorecein is predominant in the FIL with a 1:2 molar ratio (FIL2). The fluorescence excitation spectrum of FIL2 is markedly different from its absorption spectrum. Absorption features the fluorescein dianion, while the excitation spectrum is exclusively due to the monoanion. In FIL1, the absorption and excitation spectra are both characteristic of the monoanion. In both FILs, emission of the dianion is observed upon excitation of the monoanion. This unusual behavior is interpreted in the context of a fast deprotonation of the monoanion in the excited state. The presence of residual water in the ionic liquid is important for the proton transfer process. By lowering the pH of FIL1, the transient proton transfer is inhibited, and the emission of the monoanion could be observed. The FILs have completely different spectroscopic properties from solvated fluorescein in Quat(+)Cl(-), where the prototropic equilibrium is shifted toward the neutral forms.


Assuntos
Fluoresceína/química , Líquidos Iônicos/química , Ânions/química , Fluoresceína/síntese química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Prótons , Compostos de Amônio Quaternário/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA