Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 12: 1379254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751748

RESUMO

Background: Neuronal Ceroid Lipofuscinosis (NCL) disorders, recognized as the primary cause of childhood dementia globally, constitute a spectrum of genetic abnormalities. CLN8, a subtype within NCL, is characterized by cognitive decline, motor impairment, and visual deterioration. This study focuses on an atypical case with congenital onset and a remarkably slow disease progression. Methods: Whole-genome sequencing at 30× coverage was employed as part of a national genomics program to investigate the genetic underpinnings of rare diseases. This genomic approach aimed to challenge established classifications (vLINCL and EPMR) and explore the presence of a continuous phenotypic spectrum associated with CLN8. Results: The whole-genome sequencing revealed two novel likely pathogenic mutations in the CLN8 gene on chromosome 8p23.3. These mutations were not previously associated with CLN8-related NCL. Contrary to established classifications (vLINCL and EPMR), our findings suggest a continuous phenotypic spectrum associated with CLN8. Pathological subcellular markers further validated the genomic insights. Discussion: The identification of two previously undescribed likely pathogenic CLN8 gene mutations challenges traditional classifications and highlights a more nuanced phenotypic spectrum associated with CLN8. Our findings underscore the significance of genetic modifiers and interactions with unrelated genes in shaping variable phenotypic outcomes. The inclusion of pathological subcellular markers further strengthens the validity of our genomic insights. This research enhances our understanding of CLN8 disorders, emphasizing the need for comprehensive genomic analyses to elucidate the complexity of phenotypic presentations and guide tailored therapeutic strategies. The identification of new likely pathogenic mutations underscores the dynamic nature of CLN8-related NCL and the importance of individualized approaches to patient management.

2.
Curr Opin Cell Biol ; 86: 102321, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219525

RESUMO

All eukaryotes can be traced back to a single shared ancestral lineage that emerged from interactions between different prokaryotic cells. Current models of eukaryogenesis describe various selective forces and evolutionary mechanisms that contributed to the formation of eukaryotic cells. Central to this process were significant changes in cellular structure, resulting in the configuration of a new cell type characterized by internal membrane compartments. Additionally, eukaryogenesis results in a life cycle that relies on cell-cell fusion. We discuss the potential roles of proteins involved in remodeling cellular membranes, highlighting two critical stages in the evolution of eukaryotes: the internalization of symbiotic partners and a scenario wherein the emergence of sexual reproduction is linked to a polyploid ancestor generated by cell-cell fusion.


Assuntos
Fusão de Membrana , Células Procarióticas , Filogenia , Células Procarióticas/metabolismo , Células Eucarióticas/metabolismo , Eucariotos , Evolução Biológica
3.
Hum Genomics ; 17(1): 14, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849973

RESUMO

The SPATA5 gene encodes a 892 amino-acids long protein that has a putative mitochondrial targeting sequence and has been proposed to function in maintenance of mitochondrial function and integrity during mouse spermatogenesis. Several studies have associated homozygous or compound heterozygous mutations in SPATA5 gene to microcephaly, intellectual disability, seizures and hearing loss. This suggests a role of the SPATA5 gene also in neuronal development. Recently, our group presented results validating the use of blood cells for the assessment of mitochondrial function for diagnosis and follow-up of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsy. In this study, we were able to diagnose a patient with epileptogenic encephalopathy using next generation sequencing. We found two novel compound heterozygous variants in SPATA5 that are most likely causative. To analyze the impact of SPATA5 mutations on mitochondrial functional studies directly on the patients' mononuclear cells and platelets were undertaken. Oxygen consumption rates in platelets and PBMCs were impaired in the patient when compared to a healthy control. Also, a decrease in mitochondrial mass was observed in the patient monocytes with respect to the control. This suggests a true pathogenic effect of the mutations in mitochondrial function, especially in energy production and possibly biogenesis, leading to the observed phenotype.


Assuntos
Encefalopatias , Microcefalia , Animais , Masculino , Camundongos , Biópsia , Mitocôndrias/genética , Convulsões , ATPases Associadas a Diversas Atividades Celulares/metabolismo
4.
BMC Pediatr ; 22(1): 545, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36100855

RESUMO

BACKGROUND: Lissencephaly (LIS) is a cortical malformation, characterized by smooth or nearly smooth cerebral surface and a shortage of gyral and sulcal development, which is caused by deficient neuronal migration during embryogenesis. Neuronal migration involves many gene products, among which is the product of the PAFAH1B1 gene, associated with this disease. LIS is a rare disease, characterized by low population frequency, and with non-specific clinical symptoms such as early epilepsy, developmental delay or cerebral palsy-like motor problems. Given that high-throughput sequencing techniques have been improving diagnosis, we have chosen this technique for addressing this patient. CASE PRESENTATION: We present the case of a seven years old male patient with an undiagnosed rare disease, with non-specific clinical symptoms possibly compatible with lissencephaly. The patient was enrolled in a study that included the sequencing of his whole genome. Sequence data was analyzed following a bioinformatic pipeline. The variants obtained were annotated and then subjected to different filters for prioritization. Also mitochondrial genome was analyzed. A novel candidate frameshift insertion in known PAFAH1B1 gene was found, explaining the index case phenotype. The assessment through in silico tools reported that it causes nonsense mediated mechanisms and that it is damaging with high confidence scores. The insertion causes a change in the reading frame, and produces a premature stop codon, severely affecting the protein function and probably the silencing of one allele. The healthy mother did not carry the mutation, and the unaffected father was not available for analysis. CONCLUSIONS: Through this work we found a novel de novo mutation in LIS1/PAFAH1B1 gene, as a likely cause of a rare disease in a young boy with non-specific clinical symptoms. The mutation found correlates with the phenotype studied since the loss of function in the gene product has already been described in this condition. Since there are no other variants in the PAFAH1B1 gene with low population frequency and due to family history, a de novo disease mechanism is proposed.


Assuntos
Mutação da Fase de Leitura , Lisencefalia , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Humanos , Lisencefalia/genética , Masculino , Proteínas Associadas aos Microtúbulos/genética , Doenças Raras
5.
Nat Commun ; 13(1): 3880, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794124

RESUMO

Sexual reproduction consists of genome reduction by meiosis and subsequent gamete fusion. The presence of genes homologous to eukaryotic meiotic genes in archaea and bacteria suggests that DNA repair mechanisms evolved towards meiotic recombination. However, fusogenic proteins resembling those found in gamete fusion in eukaryotes have so far not been found in prokaryotes. Here, we identify archaeal proteins that are homologs of fusexins, a superfamily of fusogens that mediate eukaryotic gamete and somatic cell fusion, as well as virus entry. The crystal structure of a trimeric archaeal fusexin (Fusexin1 or Fsx1) reveals an archetypical fusexin architecture with unique features such as a six-helix bundle and an additional globular domain. Ectopically expressed Fusexin1 can fuse mammalian cells, and this process involves the additional globular domain and a conserved fusion loop. Furthermore, archaeal fusexin genes are found within integrated mobile elements, suggesting potential roles in cell-cell fusion and gene exchange in archaea, as well as different scenarios for the evolutionary history of fusexins.


Assuntos
Archaea , Eucariotos , Animais , Archaea/genética , Fusão Celular , Eucariotos/genética , Células Eucarióticas , Células Germinativas/metabolismo , Mamíferos
6.
mBio ; 12(5): e0171721, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607462

RESUMO

Signal transduction is essential for bacteria to adapt to changing environmental conditions. Among many forms of posttranslational modifications, reversible protein phosphorylation has evolved as a ubiquitous molecular mechanism of protein regulation in response to specific stimuli. The Ser/Thr protein kinase PknG modulates the fate of intracellular glutamate by controlling the phosphorylation status of the 2-oxoglutarate dehydrogenase regulator OdhI, a function that is conserved among diverse actinobacteria. PknG has a modular organization characterized by the presence of regulatory domains surrounding the catalytic domain. Here, we present an investigation using in vivo experiments, as well as biochemical and structural methods, of the molecular basis of the regulation of PknG from Corynebacterium glutamicum (CgPknG), in the light of previous knowledge available for the kinase from Mycobacterium tuberculosis (MtbPknG). We found that OdhI phosphorylation by CgPknG is regulated by a conserved mechanism that depends on a C-terminal domain composed of tetratricopeptide repeats (TPRs) essential for metabolic homeostasis. Furthermore, we identified a conserved structural motif that physically connects the TPR domain to a ß-hairpin within the flexible N-terminal region that is involved in docking interactions with OdhI. Based on our results and previous reports, we propose a model in which the TPR domain of PknG couples signal detection to the specific phosphorylation of OdhI. Overall, the available data indicate that conserved PknG domains in distant actinobacteria retain their roles in kinase regulation in response to nutrient availability. IMPORTANCE Bacteria control the metabolic processes by which they obtain nutrients and energy in order to adapt to the environment. Actinobacteria, one of the largest bacterial phyla of major importance for biotechnology, medicine, and agriculture, developed a unique control process that revolves around a key protein, the protein kinase PknG. Here, we use genetic, biochemical, and structural approaches to study PknG in a system that regulates glutamate production in Corynebacterium glutamicum, a species used for the industrial production of amino acids. The reported findings are conserved in related Actinobacteria, with broader significance for microorganisms that cause disease, as well as environmental species used industrially to produce amino acids and antibiotics every year.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Repetições de Tetratricopeptídeos , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácido Glutâmico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosforilação , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
7.
Mitochondrion ; 61: 31-43, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536563

RESUMO

Human mitochondrial diseases are a group of heterogeneous diseases caused by defects in oxidative phosphorylation, due to mutations in mitochondrial (mtDNA) or nuclear DNA. The diagnosis of mitochondrial disease is challenging since mutations in multiple genes can affect mitochondrial function, there is considerable clinical variability and a poor correlation between genotype and phenotype. Herein we assessed mitochondrial function in peripheral blood mononuclear cells (PBMCs) and platelets from volunteers without known metabolic pathology and patients with mitochondrial disease. Oxygen consumption rates were evaluated and respiratory parameters indicative of mitochondrial function were obtained. A negative correlation between age and respiratory parameters of PBMCs from control individuals was observed. Surprisingly, respiratory parameters of PBMCs normalized by cell number were similar in patients and young controls. Considering possible compensatory mechanisms, mtDNA copy number in PBMCs was quantified and an increase was found in patients with respect to controls. Hence, respiratory parameters normalized by mtDNA copy number were determined, and in these conditions a decrease in maximum respiration rate and spare respiratory capacity was observed in patients relative to control individuals. In platelets no decay was seen in mitochondrial function with age, while a reduction in basal, ATP-independent and ATP-dependent respiration normalized by cell number was detected in patients compared to control subjects. In summary, our results offer promising perspectives regarding the assessment of mitochondrial function in blood cells for the diagnosis of mitochondrial disease, minimizing the need for invasive procedures such as muscle biopsies, and for following disease progression and response to treatments.


Assuntos
Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Leucócitos Mononucleares/fisiologia , Doenças Mitocondriais/diagnóstico , Consumo de Oxigênio/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Front Microbiol ; 12: 653986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122369

RESUMO

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.

9.
Nat Commun ; 12(1): 3214, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088904

RESUMO

Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.


Assuntos
Proteínas Arqueais/metabolismo , Divisão Celular/fisiologia , Methanobrevibacter/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular , Divisão Celular/genética , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Methanobrevibacter/genética , Methanobrevibacter/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
10.
Hum Genomics ; 15(1): 28, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971976

RESUMO

BACKGROUND: Rare diseases are pathologies that affect less than 1 in 2000 people. They are difficult to diagnose due to their low frequency and their often highly heterogeneous symptoms. Rare diseases have in general a high impact on the quality of life and life expectancy of patients, which are in general children or young people. The advent of high-throughput sequencing techniques has improved diagnosis in several different areas, from pediatrics, achieving a diagnostic rate of 41% with whole genome sequencing (WGS) and 36% with whole exome sequencing, to neurology, achieving a diagnostic rate between 47 and 48.5% with WGS. This evidence has encouraged our group to pursue a molecular diagnosis using WGS for this and several other patients with rare diseases. RESULTS: We used whole genome sequencing to achieve a molecular diagnosis of a 7-year-old girl with a severe panvascular artery disease that remained for several years undiagnosed. We found a frameshift variant in one copy and a large deletion involving two exons in the other copy of a gene called YY1AP1. This gene is related to Grange syndrome, a recessive rare disease, whose symptoms include stenosis or occlusion of multiple arteries, congenital heart defects, brachydactyly, syndactyly, bone fragility, and learning disabilities. Bioinformatic analyses propose these mutations as the most likely cause of the disease, according to its frequency, in silico predictors, conservation analyses, and effect on the protein product. Additionally, we confirmed one mutation in each parent, supporting a compound heterozygous status in the child. CONCLUSIONS: In general, we think that this finding can contribute to the use of whole genome sequencing as a diagnosis tool of rare diseases, and in particular, it can enhance the set of known mutations associated with different diseases.


Assuntos
Arteriopatias Oclusivas/genética , Proteínas de Ciclo Celular/genética , Cardiopatias Congênitas/genética , Doenças Raras/genética , Fatores de Transcrição/genética , Arteriopatias Oclusivas/diagnóstico , Arteriopatias Oclusivas/patologia , Artérias/diagnóstico por imagem , Artérias/patologia , Criança , Feminino , Mutação da Fase de Leitura/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/patologia , Homozigoto , Humanos , Linhagem , Doenças Raras/diagnóstico , Doenças Raras/patologia , Sequenciamento Completo do Genoma
11.
Mol Genet Genomic Med ; 9(5): e1622, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750045

RESUMO

BACKGROUND: The etiology of many genetic diseases is challenging. This is especially true for developmental disorders of the central nervous system, since several genes can be involved. Many of such pathologies are considered rare diseases, since they affect less than 1 in 2000 people. Due to their low frequency, they present several difficulties for patients, from the delay in the diagnosis to the lack of treatments. Next-generation sequencing techniques have improved the search for diagnosis in several pathologies. Many studies have shown that the use of whole-exome/genome sequencing in rare Mendelian diseases has a diagnostic yield between 30% and 50% depending on the disease. METHODS: Here, we present the case of an undiagnosed 6-year-old boy with severe encephalopathy of unclear cause, whose etiological diagnosis was achieved by whole-genome sequencing. RESULTS: We found a novel variant that has not been previously reported in patients nor it has been described in GnomAD. Segregation analysis supports a de novo mutation, since it is not present in healthy parents. The change is predicted to be harmful to protein function, since it falls in the first quarter of the protein producing an altered reading frame and generating a premature stop codon. Additionally, the variant is classified as pathogenic according to ACMG criteria (PVS1, PM2, and PP3). Furthermore, there are several reported frameshift mutations in nearby codons as well as nonsense mutations that are predicted as pathogenic in other studies. CONCLUSION: We found a novel de novo frameshift mutation in the PURA gene (MIM number 600473), c.151_161del, with sufficient evidence of its pathogenicity.


Assuntos
Encefalopatias/genética , Proteínas de Ligação a DNA/genética , Mutação da Fase de Leitura , Fenótipo , Fatores de Transcrição/genética , Encefalopatias/patologia , Criança , Humanos , Masculino
12.
Nat Commun ; 11(1): 1641, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242019

RESUMO

The mechanisms of Z-ring assembly and regulation in bacteria are poorly understood, particularly in non-model organisms. Actinobacteria, a large bacterial phylum that includes the pathogen Mycobacterium tuberculosis, lack the canonical FtsZ-membrane anchors and Z-ring regulators described for E. coli. Here we investigate the physiological function of Corynebacterium glutamicum SepF, the only cell division-associated protein from Actinobacteria known to interact with the conserved C-terminal tail of FtsZ. We show an essential interdependence of FtsZ and SepF for formation of a functional Z-ring in C. glutamicum. The crystal structure of the SepF-FtsZ complex reveals a hydrophobic FtsZ-binding pocket, which defines the SepF homodimer as the functional unit, and suggests a reversible oligomerization interface. FtsZ filaments and lipid membranes have opposing effects on SepF polymerization, indicating that SepF has multiple roles at the cell division site, involving FtsZ bundling, Z-ring tethering and membrane reshaping activities that are needed for proper Z-ring assembly and function.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/citologia , Corynebacterium glutamicum/metabolismo , Proteínas do Citoesqueleto/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Divisão Celular , Corynebacterium glutamicum/química , Corynebacterium glutamicum/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Dimerização , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Alinhamento de Sequência
13.
Mitochondrion ; 46: 337-344, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30227252

RESUMO

Mitochondrial diseases (MD) are a group of diseases that can be caused by either mutations in the mitochondrial genome or nuclear DNA. MD may be difficult to diagnose since very often they are highly heterogeneous and with overlapping phenotypes. Molecular genomics approaches, especially NGS have helped in this sense. In this study we have sequenced the mitochondrial genome of a girl with an unspecific neurological disorder and her mother. The later, while neurologically unaffected, suffers from a myopathy without clear cause. We were able to detect two non-synonymous mutations in the MT-ATP6 gene, which we propose are strong candidates for causative agents. 9017C as the main candidate present at high heteroplasmy frequency in the patient (83,2%) and moderate in the mother (45,4%) while it has a low frequency in the general population. It might act alone or in conjunction with 9010A as an accessory mutation. Evolutionary analysis showed that both mutations were located in a critical position in the F0 a subunit, from F0-F1 ATPase. Functional studies showed that carriers of those mutations in comparison to an unaffected individual (father) presented a decrease in the basal and ATP-dependent oxygen consumption rate and a decrease in the maximum respiration rate.


Assuntos
Predisposição Genética para Doença , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Pré-Escolar , DNA Mitocondrial/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Doenças Mitocondriais/patologia , Doenças Neurodegenerativas/patologia
14.
Sci Rep ; 7: 45668, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358387

RESUMO

Bacterial kinesin light chain is a TPR domain-containing protein encoded by the bklc gene, which co-localizes with the bacterial tubulin (btub) genes in a conserved operon in Prosthecobacter. Btub heterodimers show high structural homology with eukaryotic tubulin and assemble into head-to-tail protofilaments. Intriguingly, Bklc is homologous to the light chain of the microtubule motor kinesin and could thus represent an additional eukaryotic-like cytoskeletal element in bacteria. Using biochemical characterization as well as cryo-electron tomography we show here that Bklc interacts specifically with Btub protofilaments, as well as lipid vesicles and could thus play a role in anchoring the Btub filaments to the membrane protrusions in Prosthecobacter where they specifically localize in vivo. This work sheds new light into possible ways in which the microtubule cytoskeleton may have evolved linking precursors of microtubules to the membrane via the kinesin moiety that in today's eukaryotic cytoskeleton links vesicle-packaged cargo to microtubules.


Assuntos
Proteínas de Bactérias/metabolismo , Citoesqueleto/metabolismo , Lipídeos de Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/metabolismo , Verrucomicrobia/metabolismo , Verrucomicrobia/ultraestrutura
15.
J Cell Biol ; 216(3): 571-581, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28137780

RESUMO

Cell-cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell-cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus-cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Células Germinativas/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fusão Celular/métodos , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Cricetinae , Fusão de Membrana/fisiologia , Glicoproteínas de Membrana/metabolismo
16.
PLoS Pathog ; 13(2): e1006169, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28192542

RESUMO

We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold.


Assuntos
Equinococose/metabolismo , Equinococose/parasitologia , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Inibidores de Serina Proteinase/fisiologia , Animais , Echinococcus granulosus , Gânglios Espinais/efeitos dos fármacos , Modelos Moleculares , Técnicas de Patch-Clamp , Filogenia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Ratos , Ratos Wistar , Inibidores de Serina Proteinase/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
17.
PLoS One ; 11(8): e0162033, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579771

RESUMO

Gli2 is the primary transcriptional activator of Hedgehog signalling in mammals. Upon stimulation of the pathway, Gli2 moves into the cilium before reaching the nucleus. However, the mechanisms underlying its entry into the cilium are not completely understood. Since several similarities have been reported between nuclear and ciliary import, we investigated if the nuclear import machinery participates in Gli2 ciliary entry. Here we show that while two conserved classical nuclear localization signals mediate Gli2 nuclear localization via importin (Imp)-α/ß1, these sequences are not required for Gli2 ciliary import. However, blocking Imp-mediated transport through overexpression of GTP-locked Ran reduced the percentage of Gli2 positive cilia, an effect that was not explained by increased CRM1-dependent export of Gli2 from the cilium. We explored the participation of Imp-ß2 in Gli2 ciliary traffic and observed that this transporter is involved in moving Gli2 into the cilium, as has been described for other ciliary proteins. In addition, our data indicate that Imp-ß2 might also collaborate in Gli2 nuclear entry. How does Imp-ß2 determine the final destination of a protein that can localize to two distinct subcellular compartments remains an open question. Therefore, our data shows that the nuclear-cytoplasmic shuttling machinery plays a critical role mediating the subcellular distribution of Gli2 and the activation of the pathway, but distinct importins likely play a differential role mediating its ciliary and nuclear translocation.


Assuntos
Núcleo Celular/metabolismo , Cílios/metabolismo , Sinais de Localização Nuclear/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Células NIH 3T3 , Sinais de Localização Nuclear/genética , Transporte Proteico , Proteína Gli2 com Dedos de Zinco
18.
mSphere ; 1(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303713

RESUMO

The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth in a member of the genus Leptospira. As many pathogenic species of this genus can survive inside the host but also persist in environmental water, mostly forming biofilms, identifying the molecular basis of this capacity can impact the understanding of how leptospires are able to fulfill a complete life cycle that alternates between adaptation to the host and adaptation to hostile external environmental conditions. We identified several genes and regulatory networks that can be the kickoff for deepening understanding of the molecular mechanisms involving bacterial persistence via biofilm formation; understanding this is important for the future development of tools for controlling leptospirosis.

19.
Mitochondrion ; 28: 54-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27017994

RESUMO

Mitochondrial diseases are a group of clinically heterogeneous disorders that can be difficult to diagnose. We report a two and a half year old girl with clinical symptoms compatible with Leigh disease but with no definitive diagnosis. Using next generation sequencing we found that mutation 3697G>A was responsible for the patient's clinical symptoms. Corroboration was performed via segregation analysis in mother and sister and by evolutionary analysis that showed that the mutation is located in a highly conserved region across a wide range of species. Functional analyses corroborated the mutation effect and indicated that the pathophysiological alterations were partially restored by Coenzyme Q10. In addition, we proposed that the presence of the mutation at high frequencies causes the phenotype in the patient, while other family members with intermediate levels of heteroplasmy are symptoms-free.


Assuntos
Doença de Leigh/genética , NADH Desidrogenase/genética , Mutação Puntual , Pré-Escolar , DNA Mitocondrial/química , DNA Mitocondrial/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ubiquinona/análogos & derivados , Ubiquinona/uso terapêutico
20.
Antioxid Redox Signal ; 24(4): 205-216, 2016 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-26381228

RESUMO

AIMS: Members of the thioredoxin (Trx) protein family participate mainly in redox pathways and have not been associated with Fe/S binding, in contrast to some closely related glutaredoxins (Grxs). Cestode parasites possess an unusual diversity of Trxs and Trx-related proteins with unexplored functions. In this study, we addressed the biochemical characterization of a new class of Trx-related protein (IsTRP) and a classical monothiol Grx (EgGrx5) from the human pathogen Echinococcus granulosus. RESULTS: The dimeric form of IsTRP coordinates Fe2S2 in a glutathione-independent manner; instead, Fe/S binding relies on the CXXC motif conserved among Trxs. This novel binding mechanism allows holo-IsTRP to be highly resistant to oxidation. IsTRP lacks canonical reductase activities. Mitochondrially targeted IsTRP aids growth of a Grx5 null yeast strain. Similar complementation assays performed with EgGrx5 revealed functional conservation for class II Grxs, despite the presence of nonconserved structural elements. IsTRP is a cestode lineage-specific protein highly expressed in the gravid adult worm, which releases the infective stage critical for dissemination. INNOVATION: IsTRP is the first member from the Trx family to be reported to bind Fe/S. We disclose a novel mechanism of Fe/S coordination within the Trx folding unit, which renders the cluster highly resistant to oxidation-mediated disassembly. CONCLUSION: We demonstrate that IsTRP defines a new protein family within the Trx superfamily, confirm the conservation of function for class II Grx from nonphylogenetically related species, and highlight the versatility of the Trx folding unit to acquire Fe/S binding as a recurrent emergent function. Antioxid. Redox Signal. 00, 000-000.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA