RESUMO
BACKGROUND: During the pandemic in the spring of 2020 with no vaccine or treatment for SARS-CoV-2 and its associated disease, COVID-19, convalescent plasma from recovered COVID-19 (CCP) patients offered a potential therapy. In March 2020, the United States (U.S.) Food and Drug Administration (FDA) authorized CCP under emergency Investigational New Drug (eIND) exemption and an IRB-approved Expanded Access Program (EAP) to treat severe COVID-19. Hospital demand grew rapidly in the Southeastern U.S., resulting in backlogs of CCP orders. We describe a large U.S. blood center's (BC) rapid implementation of a CCP program in response to community needs. STUDY DESIGN AND METHODS: From April 2 to May 17, 2020, CCP was collected by whole blood or apheresis. Initial manual approaches to donor intake, collection, and distribution were rapidly replaced with automated processes. All CCP donors and products underwent FDA-required screening and testing. RESULTS: A total of 619 CCP donors (299 females, 320 males) presented for CCP donation (161 [25.7%] whole blood, 466 [74.3%] plasmapheresis) resulting in 1219 CCP units. Production of CCP increased as processes were automated and streamlined, from a mean of 11 donors collected/day for the first month to a mean of 25 donors collected/day in the subsequent 2 weeks. Backlogged orders were cleared, and inventory began to accumulate 4 weeks after project initiation. CONCLUSION: The BC was able to implement an effective de novo CCP collection program within 6 weeks in response to a community need in a global pandemic. Documentation of the experience may inform preparedness for future pandemics.
Assuntos
COVID-19/terapia , SARS-CoV-2 , Adulto , Coleta de Amostras Sanguíneas , Comunicação , Feminino , Humanos , Imunização Passiva/métodos , Masculino , Pessoa de Meia-Idade , Garantia da Qualidade dos Cuidados de Saúde , Soroterapia para COVID-19RESUMO
BACKGROUND: Donated platelets are stored at 22°C and discarded within 5 days because of diminished function and risk of bacterial contamination. Decline of platelet function has been attributed to decreased mitochondrial function and increased oxidative stress. Resveratrol (Res) and cytochrome c (Cyt c), in combination with hypothermic storage, may extend platelet viability. METHODS: Platelets from 20 donors were pooled into four independent sets and stored at 22°C or 4°C in the absence or presence of Res (50 µM) or Cyt c (100 µM) for up to 10 days. Sequential measurement of platelet counts, coagulation function (thromboelastography), oxygen consumption, lipid peroxidation, glucose-lactate levels, pH, TCO2, and soluble platelet activation markers (CD62P/PF-4) was performed. RESULTS: Platelet function diminished rapidly over time at 22°C versus 4°C (adenosine diphosphate, day 10 [0.6 ± 0.5] vs. [7.8 ± 3.5], arachidonic acid: day 10 [0.5 ± 0.5] vs. [30.1 ± 27.72]). At 4°C, storage treatment with Res or Cyt c limited deterioration in platelet function up to day 10, an effect not observed at 22°C (day 10, 4°C, Con [7.8 ± 3.5] vs. Res [37.3 ± 24.19] vs. Cyt c [45.83 ± 43.06]). Mechanistic analysis revealed oxygen consumption increased in response to Cyt c at 22°C, whereas neither Cyt c or Res affected oxygen consumption at 4°C. Lipid peroxidation was only reduced at 22°C (day 7 and day 10), but remained unchanged at 4°C, or when Res or Cyt c was added. Cytosolic ROS was significantly reduced by pretreatment with Res at 4°C. Total platelet count and soluble activation markers were unchanged during storage and not affected by Res, Cyt c, or temperature. Glucose concentration, pH and TCO2 decreased while lactate levels increased during storage at 22°C but not 4°C. CONCLUSION: Platelet function is preserved by cold storage for up to 10 days. This function is enhanced by treatment with Res or Cyt c, which supports mitochondrial activity, thus potentially extending platelet shelf life.