Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Lipids Health Dis ; 23(1): 113, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643113

RESUMO

BACKGROUND: Pro-inflammatory processes triggered by the accumulation of extracellular amyloid beta (Aß) peptides are a well-described pathology in Alzheimer's disease (AD). Activated astrocytes surrounding Aß plaques contribute to inflammation by secreting proinflammatory factors. While astrocytes may phagocytize Aß and contribute to Aß clearance, reactive astrocytes may also increase Aß production. Therefore, identifying factors that can attenuate astrocyte activation and neuroinflammation and how these factors influence pro-inflammatory pathways is important for developing therapeutic and preventive strategies in AD. Here, we identify the platelet-activating factor receptor (PTAFR) pathway as a key mediator of astrocyte activation. Intriguingly, several polar lipids (PLs) have exhibited anti-inflammatory protective properties outside the central nervous system through their inhibitory effect on the PTAFR pathway. Thus, we additionally investigated whether different PLs also exert inhibitory effects on the PAF pathway in astrocytes and whether their presence influences astrocytic pro-inflammatory signaling and known AD pathologies in vitro. METHODS: PLs from salmon and yogurt were extracted using novel food-grade techniques and their fatty acid profile was determined using LC/MS. The effect of PLs on parameters such as astrocyte activation and generation of oxygen species (ROS) was assessed. Additionally, effects of the secretome of astrocytes treated with these polar lipids on aged neurons was measured. RESULTS: We show that PLs obtained from salmon and yogurt lower astrocyte activation, the generation of reactive oxygen species (ROS), and extracellular Aß accumulation. Cell health of neurons exposed to the secretome of astrocytes treated with salmon-derived PLs and Aß was less affected than those treated with astrocytes exposed to Aß only. CONCLUSION: Our results highlight a novel underlying mechanism, why consuming PL-rich foods such as fish and dairy may reduce the risk of developing dementia and associated disorders.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipídeos
2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339064

RESUMO

Proteinaceous aggregates accumulate in neurodegenerative diseases such as Alzheimer's Disease (AD), inducing cellular defense mechanisms and altering the redox status. S100 pro-inflammatory cytokines, particularly S100B, are activated during AD, but recent findings reveal an unconventional molecular chaperone role for S100B in hindering Aß aggregation and toxicity. This suggests a potential protective role for S100B at the onset of Aß proteotoxicity, occurring in a complex biochemical environment prone to oxidative damage. Herein, we report an investigation in which extracellular oxidative conditions are mimicked to test if the susceptibility of S100B to oxidation influences its protective activities. Resorting to mild oxidation of S100B, we observed methionine oxidation as inferred from mass spectrometry, but no cysteine-mediated crosslinking. Structural analysis showed that the folding, structure, and stability of oxidized S100B were not affected, and nor was its quaternary structure. However, studies on Aß aggregation kinetics indicated that oxidized S100B was more effective in preventing aggregation, potentially linked to the oxidation of Met residues within the S100:Aß binding cleft that favors interactions. Using a cell culture model to analyze the S100B functions in a highly oxidative milieu, as in AD, we observed that Aß toxicity is rescued by the co-administration of oxidized S100B to a greater extent than by S100B. Additionally, results suggest a disrupted positive feedback loop involving S100B which is caused by its oxidation, leading to the downstream regulation of IL-17 and IFN-α2 expression as mediated by S100B.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Agregados Proteicos , Oxirredução , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37895876

RESUMO

The visceral stimuli from the digestive tract are transmitted via afferent nerves through the spinal cord to the brain, where they are felt as pain. The overreaction observed in the brain of irritable bowel syndrome (IBS) patients may be due to increased peripheral sensitivity to stimuli from the gastrointestinal tract. Although the exact pathway is uncertain, attenuation of visceral hypersensitivity is still of interest in treating IBS. It has been shown that stress stimulates the sympathetic nervous system while inhibiting the vagus nerve (VN). In addition, stress factors lead to dysbiosis and chronic low-grade inflammation of the intestinal mucosa, which can lead to lower gastrointestinal visceral hypersensitivity. Therefore, an important goal in the treatment of IBS is the normalization of the intestinal microflora. An interesting option seems to be nutraceuticals, including Terminalia chebula, which has antibacterial and antimicrobial activity against various pathogenic Gram-positive and Gram-negative bacteria. Additionally, short-term transcutaneous vagus nerve stimulation can reduce the stress-induced increase in intestinal permeability, thereby reducing inflammation. The conducted studies also indicate a relationship between the stimulation of the vagus nerve (VN) and the activation of neuromodulatory networks in the central nervous system. Therefore, it seems reasonable to conclude that a two-way action through stimulating the VN and using nutraceuticals may become an effective therapy in treating IBS.

4.
Eur J Med Genet ; 66(6): 104763, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054968

RESUMO

Gastrointestinal (GI) problems are common in Phelan-McDermid syndrome (PMS). Chewing and swallowing difficulties, dental problems, reflux disease, cyclic vomiting, constipation, incontinence, diarrhoea, and nutritional deficiencies have been most frequently reported. Therefore, this review summarises current findings on GI problems and addresses the fundamental questions, which were based on parental surveys, of how frequent GI problems occur in PMS, what GI problems occur, what consequences (e.g., nutritional deficiencies) GI problems cause for individuals with PMS, and how GI problems can be treated in individuals with PMS. Our findings show that gastrointestinal problems have a detrimental effect on the health of people with PMS and are a significant burden for their families. Therefore, we advise evaluation for these problems and formulate care recommendations.


Assuntos
Transtornos Cromossômicos , Gastroenteropatias , Desnutrição , Humanos , Deglutição , Mastigação , Consenso , Transtornos Cromossômicos/genética , Deleção Cromossômica , Gastroenteropatias/epidemiologia , Cromossomos Humanos Par 22
5.
Breastfeed Med ; 18(4): 279-290, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071630

RESUMO

Background: Human milk (HM) fortification has been recommended for the nutritional optimization of very low-birthweight infants. This study analyzed the bioactive components of HM and evaluated fortification choices that could accentuate or attenuate the concentration of such components, with special reference to human milk-derived fortifier (HMDF) offered to extremely premature infants as an exclusive human milk diet. Materials and Methods: An observational feasibility study analyzed the biochemical and immunochemical characteristics of mothers' own milk (MOM), both fresh and frozen, and pasteurized banked donor human milk (DHM), each supplemented with either HMDF or cow's milk-derived fortifier (CMDF). Gestation-specific specimens were analyzed for macronutrients, pH, total solids, antioxidant activity (AA), α-lactalbumin, lactoferrin, lysozyme, and α- and ß-caseins. Data were analyzed for variance applying general linear model and Tukey's test for pairwise comparison. Results: DHM exhibited significantly lower (p < 0.05) lactoferrin and α-lactalbumin concentrations than fresh and frozen MOM. HMDF reinstated lactoferrin and α-lactalbumin and exhibited higher protein, fat, and total solids (p < 0.05) in comparison to unfortified and CMDF-supplemented specimens. HMDF had the highest (p < 0.05) AA, suggesting the potential capability of HMDF to enhance oxidative scavenging. Conclusion: DHM, compared with MOM, has reduced bioactive properties, and CMDF conferred the least additional bioactive components. Reinstatement and further enhancement of bioactivity, which has been attenuated through pasteurization of DHM, is demonstrated through HMDF supplementation. Freshly expressed MOM fortified with HMDF and given early, enterally, and exclusively (3E) appears an optimal nutritional choice for extremely premature infants.


Assuntos
Lactente Extremamente Prematuro , Leite Humano , Recém-Nascido , Lactente , Feminino , Animais , Bovinos , Humanos , Leite Humano/química , Lactalbumina/análise , Lactoferrina/análise , Aleitamento Materno , Dieta
7.
Eur J Med Genet ; 66(5): 104732, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36822569

RESUMO

SHANK3-related Phelan-McDermid syndrome (PMS) is caused by a loss of the distal part of chromosome 22, including SHANK3, or by a pathological SHANK3 variant. There is an important genetic and phenotypic diversity among patients who can present with developmental delay, language impairments, autism, epilepsy, and other symptoms. SHANK3, encoding a synaptic scaffolding protein, is deleted in the majority of patients with PMS and is considered a major gene involved in the neurological impairments of the patients. However, differences in deletion size can influence clinical features, and in some rare cases, deletions at the 22q13 locus in individuals with SHANK3-unrelated PMS do not encompass SHANK3. These individuals with SHANK3-unrelated PMS still display a PMS-like phenotype. This suggests the participation of other 22q13 genes in the pathogenesis of PMS. Here, we review the biological function and potential implication in PMS symptoms of 110 genes located in the 22q13 region, focusing on 35 genes with evidence for association with neurodevelopmental disorders, including 13 genes for epilepsy and 11 genes for microcephaly and/or macrocephaly. Our review is restricted to the 22q13 region, but future large-scale studies using whole genome sequencing and deep-phenotyping are warranted to develop predictive models of clinical trajectories and to target specific medical and educational care for each individual with PMS.


Assuntos
Transtornos Cromossômicos , Humanos , Transtornos Cromossômicos/patologia , Deleção Cromossômica , Cromossomos Humanos Par 22/genética , Fenótipo
9.
J Pers Med ; 13(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36836486

RESUMO

Children with autism spectrum disorder may exhibit nutritional deficiencies due to reduced intake, genetic variants, autoantibodies interfering with vitamin transport, and the accumulation of toxic compounds that consume vitamins. Importantly, vitamins and metal ions are essential for several metabolic pathways and for neurotransmitter functioning. The therapeutic benefits of supplementing vitamins, minerals (Zinc, Magnesium, Molybdenum, and Selenium), and other cofactors (coenzyme Q10, alpha-lipoic acid, and tetrahydrobiopterin) are mediated through their cofactor as well as non-cofactor functions. Interestingly, some vitamins can be safely administered at levels far above the dose typically used to correct the deficiency and exert effects beyond their functional role as enzyme cofactors. Moreover, the interrelationships between these nutrients can be leveraged to obtain synergistic effects using combinations. The present review discusses the current evidence for using vitamins, minerals, and cofactors in autism spectrum disorder, the rationale behind their use, and the prospects for future use.

10.
Pharmaceutics ; 15(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678829

RESUMO

Nanoparticles (NPs) represent an attractive strategy to overcome difficulties associated with the delivery of therapeutics. Knowing the optimal properties of NPs to address these issues could allow for improved in vivo responses. This work investigated NPs prepared from 5 materials of 3 sizes and 3 concentrations applied to a cell barrier model. The NPs permeability across a cell barrier and their effects on cell barrier integrity and cell viability were evaluated. The properties of these NPs, as determined in water (traditional) vs. media (realistic), were compared to cell responses. It was found that for all cellular activities, NP properties determined in media was the best predictor of the cell response. Notably, ZnO NPs caused significant alterations to cell viability across all 3 cell lines tested. Importantly, we report that the zeta potential of NPs correlates significantly with NP permeability and NP-induced changes in cell viability. NPs with physiological-based zeta potential of -12 mV result in good cell barrier penetration without considerable changes in cell viability.

11.
Ir J Med Sci ; 192(4): 1835-1845, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36224463

RESUMO

BACKGROUND: In humans, zinc is involved in many biological functions acting as signaling ion, neurotransmitter, structural component of proteins, and cofactor for many enzymes and, through this, is an important regulator of the immune and nervous system. Food supplies zinc to the human body, but a high prevalence of inadequate dietary zinc intake has been reported worldwide. AIMS: The objective of this study was to investigate the zinc intake and bioavailability of over 250 women (pregnant and non-pregnant) based in Ireland, in order to evaluate the dietary inadequacy of zinc. METHODOLOGY: We used a food frequency questionnaire designed to assess the zinc intake and bioavailability of the participants. RESULTS: Our results show that 58% of participants are at risk of inadequate zinc intake and that 29% may be zinc deficient. The prevalence of inadequate zinc intake was lower for pregnant women (zinc deficient 9%, at risk 38%) than for non-pregnant women due to more frequent consumption of supplements. Low zinc intake was not correlated with the age of participants and resulted from a combination of inadequate intake of zinc-rich food and relatively higher intake of food items rich in phytate, a major zinc uptake inhibitor. CONCLUSIONS: We conclude that at present, low zinc intake may be prevalent in as much as 87% of women, including 47% of pregnant women. Therefore, zinc status needs to be considered as a factor impacting the health of women, and in particular pregnant women, also in industrialized and developed countries such as Ireland.


Assuntos
Desnutrição , Zinco , Feminino , Humanos , Zinco/análise , Prevalência , Irlanda/epidemiologia , Dieta , Estado Nutricional
12.
Biomedicines ; 10(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552006

RESUMO

Neurodegenerative diseases are a group of disorders characterised by progressive loss of brain function. The most common of these is Alzheimer's disease, a form of dementia. Intake of macro- and micro-nutrients impacts brain function, including memory, learning, mood, and behaviour. Lipids, particularly phospholipids and sphingolipids, are crucial structural components of neural tissues and significantly affect cognitive function. The importance of functional foods in preventing cardiovascular disease is well-documented in the current literature. However, the significance of such foods for central nervous system health and neurodegenerative diseases is less recognized. Gut microbiome composition affects cognitive health and function, and dietary lipids are known to influence gut health. Thus, this review will discuss different sources of dietary lipids and their effect on cognitive functioning and their interaction with the gut microbiome in the context of neurodegenerative disease.

13.
Cell Mol Life Sci ; 79(12): 589, 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36371739

RESUMO

Autism spectrum disorders (ASD) are neurodevelopmental disorders. Genetic factors, along with non-genetic triggers, have been shown to play a causative role. Despite the various causes, a triad of common symptoms defines individuals with ASD; pervasive social impairments, impaired social communication, and repeated sensory-motor behaviors. Therefore, it can be hypothesized that different genetic and environmental factors converge on a single hypothetical neurobiological process that determines these behaviors. However, the cellular and subcellular signature of this process is, so far, not well understood. Here, we performed a comparative study using "omics" approaches to identify altered proteins and, thereby, biological processes affected in ASD. In this study, we mined publicly available repositories for genetic mouse model data sets, identifying six that were suitable, and compared them with in-house derived proteomics data from prenatal zinc (Zn)-deficient mice, a non-genetic mouse model with ASD-like behavior. Findings derived from these comparisons were further validated using in vitro neuronal cell culture models for ASD. We could show that a protein network, centered on VAMP2, STX1A, RAB3A, CPLX2, and AKAP5, is a key convergence point mediating synaptic vesicle release and recycling, a process affected across all analyzed models. Moreover, we demonstrated that Zn availability has predictable functional effects on synaptic vesicle release in line with the alteration of proteins in this network. In addition, drugs that target kinases, reported to regulate key proteins in this network, similarly impacted the proteins' levels and distribution. We conclude that altered synaptic stability and plasticity through abnormal synaptic vesicle dynamics and function may be the common neurobiological denominator of the shared behavioral abnormalities in ASD and, therefore, a prime drug target for developing therapeutic strategies.


Assuntos
Transtorno do Espectro Autista , Gravidez , Feminino , Camundongos , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Modelos Animais de Doenças , Neurônios/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo
14.
Nutrients ; 14(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297097

RESUMO

Platelet-activating factor (PAF) is a lipid mediator that interacts with its receptor (PAF-R) to carry out cell signalling. However, under certain conditions the binding of PAF to PAF-R leads to the activation of pro-inflammatory and prothrombotic pathways that have been implicated in the onset and development of atherosclerotic cardiovascular diseases (CVD) and inflammatory diseases. Over the past four decades, research has focused on the identification and development of PAF-R antagonists that target these inflammatory diseases. Research has also shown that dietary factors such as polar lipids, polyphenols, and other nutrient constituents may affect PAF metabolism and PAF-R function through various mechanisms. In this review we focus on the inhibition of PAF-R and how this may contribute to reducing cardiovascular disease risk. We conclude that further development of PAF-R inhibitors and human studies are required to investigate how modulation of the PAF-R may prevent the development of atherosclerotic cardiovascular disease and may lead to the development of novel therapeutics.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Nutrientes
15.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36292989

RESUMO

This Special Edition intends to focus on the influence of non-genetic factors as modifiers of synaptic plasticity and neurotransmission in health and disease [...].


Assuntos
Plasticidade Neuronal , Transmissão Sináptica , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Sistema Nervoso Central/fisiologia
16.
Pharmaceutics ; 14(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890345

RESUMO

Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface. In this study, the FDA-approved polymer poly (lactic-co-glycolic) acid was used to optimise NMeds that were surface modified with a series of potential GBM-specific ligands. The NMeds were fully characterised for their physical and chemical properties, and then in vitro testing was performed to evaluate cell uptake and GBM cell specificity. While all targeted NMeds showed improved uptake, only those decorated with the-cell surface vimentin antibody M08 showed specificity for GBM over healthy cells. Finally, the most promising targeted NMed candidate was loaded with the well-known chemotherapeutic, paclitaxel, to confirm targeting and therapeutic effects in C6 GBM cells. These results demonstrate the importance of using well-optimised NMeds targeted with novel ligands to advance delivery and pharmaceutical effects against diseased cells while minimising the risk for nearby healthy cells.

17.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682762

RESUMO

Epidemiological studies have shown a clear association between early life zinc deficiency and Autism Spectrum Disorders (ASD). In line with this, mouse models have revealed prenatal zinc deficiency as a profound risk factor for neurobiological and behavioral abnormalities in the offspring reminiscent of ASD behavior. From these studies, a complex pathology emerges, with alterations in the gastrointestinal and immune system and synaptic signaling in the brain, as a major consequence of prenatal zinc deficiency. The features represent a critical link in a causal chain that leads to various neuronal dysfunctions and behavioral phenotypes observed in prenatal zinc deficient (PZD) mice and probably other mouse models for ASD. Given that the complete phenotype of PZD mice may be key to understanding how non-genetic factors can modify the clinical features and severity of autistic patients and explain the observed heterogeneity, here, we summarize published data on PZD mice. We critically review the emerging evidence that prenatal zinc deficiency is at the core of several environmental risk factors associated with ASD, being mechanistically linked to ASD-associated genetic factors. In addition, we highlight future directions and outstanding questions, including potential symptomatic, disease-modifying, and preventive treatment strategies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Desnutrição , Animais , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Desnutrição/complicações , Camundongos , Gravidez , Vitaminas , Zinco
19.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36613749

RESUMO

Since hundreds of years ago, metals have been recognized as impacting our body's physiology. As a result, they have been studied as a potential cure for many ailments as well as a cause of acute or chronic poisoning. However, the link between aberrant metal levels and neuropsychiatric illnesses such as schizophrenia and neurodevelopmental disorders, such as autism spectrum disorders (ASDs), is a relatively new finding, despite some evident ASD-related consequences of shortage or excess of specific metals. In this review, we will summarize past and current results explaining the pathomechanisms of toxic metals at the cellular and molecular levels that are still not fully understood. While toxic metals may interfere with dozens of physiological processes concurrently, we will focus on ASD-relevant activity such as inflammation/immune activation, mitochondrial malfunction, increased oxidative stress, impairment of axonal myelination, and synapse formation and function. In particular, we will highlight the competition with essential metals that may explain why both the presence of certain toxic metals and the absence of certain essential metals have emerged as risk factors for ASD. Although often investigated separately, through the agonistic and antagonistic effects of metals, a common metal imbalance may result in relation to ASD.


Assuntos
Transtorno do Espectro Autista , Metais Pesados , Humanos , Transtorno do Espectro Autista/etiologia , Intoxicação por Metais Pesados/complicações , Estresse Oxidativo
20.
Cell Mol Life Sci ; 79(1): 46, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936034

RESUMO

Gastrointestinal (GI) problems and microbiota alterations have been frequently reported in autism spectrum disorders (ASD). In addition, abnormal perinatal trace metal levels have been found in ASD. Accordingly, mice exposed to prenatal zinc deficiency display features of ASD-like behavior. Here, we model GI development using 3D intestinal organoids grown under zinc-restricted conditions. We found significant morphological alterations. Using proteomic approaches, we identified biological processes affected by zinc deficiency that regulate barrier permeability and pro-inflammatory pathways. We confirmed our results in vivo through proteomics studies and investigating GI development in zinc-deficient mice. These show altered GI physiology and pro-inflammatory signaling, resulting in chronic systemic and neuroinflammation, and gut microbiota composition similar to that reported in human ASD cases. Thus, low zinc status during development is sufficient to compromise intestinal barrier integrity and activate pro-inflammatory signaling, resulting in changes in microbiota composition that may aggravate inflammation, altogether mimicking the co-morbidities frequently observed in ASD.


Assuntos
Transtorno do Espectro Autista , Gastroenteropatias , Doenças Neuroinflamatórias , Zinco/deficiência , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/microbiologia , Feminino , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/microbiologia , Organoides , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA