Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 60, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414061

RESUMO

BACKGROUND: Cancer cells can overexpress CD47, an innate immune checkpoint that prevents phagocytosis upon interaction with signal regulatory protein alpha (SIRPα) expressed in macrophages and other myeloid cells. Several clinical trials have reported that CD47 blockade reduces tumor growth in hematological malignancies. However, CD47 blockade has shown modest results in solid tumors, including melanoma. Our group has demonstrated that histone deacetylase 6 inhibitors (HDAC6is) have immunomodulatory properties, such as controlling macrophage phenotype and inflammatory properties. However, the molecular and cellular mechanisms controlling these processes are not fully understood. In this study, we evaluated the role of HDAC6 in regulating the CD47/SIRPα axis and phagocytosis in macrophages. METHODS: We tested the role of HDAC6is, especially Nexturastat A, in regulating macrophage phenotype and phagocytic function using bone marrow-derived macrophages and macrophage cell lines. The modulation of the CD47/SIRPα axis and phagocytosis by HDAC6is was investigated using murine and human melanoma cell lines and macrophages. Phagocytosis was evaluated via coculture assays of macrophages and melanoma cells by flow cytometry and immunofluorescence. Lastly, to evaluate the antitumor activity of Nexturastat A in combination with anti-CD47 or anti-SIRPα antibodies, we performed in vivo studies using the SM1 and/or B16F10 melanoma mouse models. RESULTS: We observed that HDAC6is enhanced the phenotype of antitumoral M1 macrophages while decreasing the protumoral M2 phenotype. In addition, HDAC6 inhibition diminished the expression of SIRPα, increased the expression of other pro-phagocytic signals in macrophages, and downregulated CD47 expression in mouse and human melanoma cells. This regulatory role on the CD47/SIRPα axis translated into enhanced antitumoral phagocytic capacity of macrophages treated with Nexturastat A and anti-CD47. We also observed that the systemic administration of HDAC6i enhanced the in vivo antitumor activity of anti-CD47 blockade in melanoma by modulating macrophage and natural killer cells in the tumor microenvironment. However, Nexturastat A did not enhance the antitumor activity of anti-SIRPα despite its modulation of macrophage populations in the SM1 tumor microenvironment. CONCLUSIONS: Our results demonstrate the critical regulatory role of HDAC6 in phagocytosis and innate immunity for the first time, further underscoring the use of these inhibitors to potentiate CD47 immune checkpoint blockade therapeutic strategies.


Assuntos
Ácidos Hidroxâmicos , Melanoma , Neoplasias , Compostos de Fenilureia , Humanos , Camundongos , Animais , Antígeno CD47/metabolismo , Fagocitose , Imunoterapia/métodos , Neoplasias/patologia , Microambiente Tumoral , Desacetilase 6 de Histona
2.
Mol Cancer Ther ; 22(12): 1376-1389, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586844

RESUMO

Radiotherapy is a curative cancer treatment modality that imparts damage to cellular DNA, induces immunogenic cell death, and activates antitumor immunity. Despite the radiotherapy-induced direct antitumor effect seen within the treated volume, accumulating evidence indicates activation of innate antitumor immunity. Acute proinflammatory responses mediated by anticancer M1 macrophages are observed in the immediate aftermath following radiotherapy. However, after a few days, these M1 macrophages are converted to anti-inflammatory and pro-cancer M2 phenotype, leading to cancer resistance and underlying potential tumor relapse. Histone deacetylase 6 (HDAC6) plays a crucial role in regulating macrophage polarization and innate immune responses. Here, we report targeting HDAC6 function with a novel selective inhibitor (SP-2-225) as a potential therapeutic candidate for combination therapy with radiotherapy. This resulted in decreased tumor growth and enhanced M1/M2 ratio of infiltrating macrophages within tumors. These observations support the use of selective HDAC6 inhibitors to improve antitumor immune responses and prevent tumor relapse after radiotherapy.


Assuntos
Neoplasias , Humanos , Desacetilase 6 de Histona , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Macrófagos , Imunidade Inata , Recidiva
3.
Cancers (Basel) ; 13(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34944799

RESUMO

Melanoma is the least common but deadliest type of skin cancer. Melanomagenesis is driven by a series of mutations and epigenetic alterations in oncogenes and tumor suppressor genes that allow melanomas to grow, evolve, and metastasize. Epigenetic alterations can also lead to immune evasion and development of resistance to therapies. Although the standard of care for melanoma patients includes surgery, targeted therapies, and immune checkpoint blockade, other therapeutic approaches like radiation therapy, chemotherapy, and immune cell-based therapies are used for patients with advanced disease or unresponsive to the conventional first-line therapies. Targeted therapies such as the use of BRAF and MEK inhibitors and immune checkpoint inhibitors such as anti-PD-1 and anti-CTLA4 only improve the survival of a small subset of patients. Thus, there is an urgent need to identify alternative standalone or combinatorial therapies. Epigenetic modifiers have gained attention as therapeutic targets as they modulate multiple cellular and immune-related processes. Due to melanoma's susceptibility to extrinsic factors and reversible nature, epigenetic drugs are investigated as a therapeutic avenue and as adjuvants for targeted therapies and immune checkpoint inhibitors, as they can sensitize and/or reverse resistance to these therapies, thus enhancing their therapeutic efficacy. This review gives an overview of the role of epigenetic changes in melanoma progression and resistance. In addition, we evaluate the latest advances in preclinical and clinical research studying combinatorial therapies and discuss the use of epigenetic drugs such as HDAC and DNMT inhibitors as potential adjuvants for melanoma patients.

4.
Front Pharmacol ; 11: 577571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324210

RESUMO

Immune cells of the monocyte/macrophage lineage are characterized by their diversity, plasticity, and variety of functions. Among them, macrophages play a central role in antiviral responses, tissue repair, and fibrosis. Macrophages can be reprogrammed by environmental cues, thus changing their phenotype during an antiviral immune response as the viral infection progresses. While M1-like macrophages are essential for the initial inflammatory responses, M2-like macrophages are critical for tissue repair after pathogen clearance. Numerous reports have evaluated the detrimental effects that coronaviruses, e.g., HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2, have on the antiviral immune response and macrophage functions. In this review, we have addressed the breadth of macrophage phenotypes during the antiviral response and provided an overview of macrophage-coronavirus interactions. We also discussed therapeutic approaches to target macrophage-induced complications, currently under evaluation in clinical trials for coronavirus disease 2019 patients. Additionally, we have proposed alternative approaches that target macrophage recruitment, interferon signaling, cytokine storm, pulmonary fibrosis, and hypercoagulability.

5.
Cancer Res ; 80(17): 3649-3662, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605998

RESUMO

Despite the outstanding clinical results of immune checkpoint blockade (ICB) in melanoma and other cancers, clinical trials in breast cancer have reported low responses to these therapies. Current efforts are now focused on improving the treatment efficacy of ICB in breast cancer using new combination designs such as molecularly targeted agents, including histone deacetylase inhibitors (HDACi). These epigenetic drugs have been widely described as potent cytotoxic agents for cancer cells. In this work, we report new noncanonical regulatory properties of ultra-selective HDAC6i over the expression and function of epithelial-mesenchymal transition pathways and the invasiveness potential of breast cancer. These unexplored roles position HDAC6i as attractive options to potentiate ongoing immunotherapeutic approaches. These new functional activities of HDAC6i involved regulation of the E-cadherin/STAT3 axis. Pretreatment of tumors with HDAC6i induced critical changes in the tumor microenvironment, resulting in improved effectiveness of ICB and preventing dissemination of cancer cells to secondary niches. Our results demonstrate for the first time that HDAC6i can both improve ICB antitumor immune responses and diminish the invasiveness of breast cancer with minimal cytotoxic effects, thus departing from the cytotoxicity-centric paradigm previously assigned to HDACi. SIGNIFICANCE: Ultraselective HDAC6 inhibitors can reduce tumor growth and invasiveness of breast cancer by noncanonical mechanisms unrelated to the previously cytotoxic properties attributed to HDAC inhibitors.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Desacetilase 6 de Histona/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Invasividade Neoplásica/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo
7.
Sci Rep ; 9(1): 6136, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992475

RESUMO

Histone deacetylases (HDACs) are involved in diverse cellular regulatory mechanisms including non-canonical functions outside the chromatin environment. Several publications have demonstrated that selective HDAC inhibitors (HDACi) can influence tumor immunogenicity and the functional activity of specific immune cells. In particular, the selective inhibition of HDAC6 has been reported to decrease tumor growth in several malignancies. However, there is still no clarity about the cellular components mediating this effect. In this study, we evaluated the HDAC6i Nexturastat A as a priming agent to facilitate the transition of the tumor microenvironment from "cold" to "hot", and potentially augment immune check-point blockade therapies. This combination modality demonstrated to significantly reduce tumor growth in syngeneic melanoma tumor models. Additionally, we observed a complete neutralization of the up-regulation of PD-L1 and other immunosuppressive pathways induced by the treatment with anti-PD-1 blockade. This combination also showed profound changes in the tumor microenvironment such as enhanced infiltration of immune cells, increased central and effector T cell memory, and a significant reduction of pro-tumorigenic M2 macrophages. The evaluation of individual components of the tumor microenvironment suggested that the in vivo anti-tumor activity of HDAC6i is mediated by its effect on tumor cells and tumor-associated macrophages, and not directly over T cells. Overall, our results indicate that selective HDAC6i could be used as immunological priming agents to sensitize immunologically "cold" tumors and subsequently improve ongoing immune check-point blockade therapies.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Macrófagos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Anti-Inflamatórios/uso terapêutico , Antígeno B7-H1/imunologia , Desacetilase 6 de Histona/imunologia , Tolerância Imunológica/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA