Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 18652, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819138

RESUMO

Loss of epithelial polarity and gain in invasiveness by carcinoma cells are critical events in the aggressive progression of cancers and depend on phenotypic transition programs such as the epithelial-to-mesenchymal transition (EMT). Many studies have reported the aberrant expression of voltage-gated sodium channels (NaV) in carcinomas and specifically the NaV1.5 isoform, encoded by the SCN5A gene, in breast cancer. NaV1.5 activity, through an entry of sodium ions, in breast cancer cells is associated with increased invasiveness, but its participation to the EMT has to be clarified. In this study, we show that reducing the expression of NaV1.5 in highly aggressive human MDA-MB-231 breast cancer cells reverted the mesenchymal phenotype, reduced cancer cell invasiveness and the expression of the EMT-promoting transcription factor SNAI1. The heterologous expression of NaV1.5 in weakly invasive MCF-7 breast cancer cells induced their expression of both SNAI1 and ZEB1 and increased their invasive capacities. In MCF-7 cells the stimulation with the EMT-activator signal TGF-ß1 increased the expression of SCN5A. Moreover, the reduction of the salt-inducible kinase 1 (SIK1) expression promoted NaV1.5-dependent invasiveness and expression of EMT-associated transcription factor SNAI1. Altogether, these results indicated a prominent role of SIK1 in regulating NaV1.5-dependent EMT and invasiveness.


Assuntos
Neoplasias da Mama/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta1/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fatores de Transcrição da Família Snail/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
2.
Bioorg Med Chem ; 26(9): 2428-2436, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29673714

RESUMO

Voltage-gated sodium channels (VGSC) are a well-established drug target for anti-epileptic, anti-arrhythmic and pain medications due to their presence and the important roles that they play in excitable cells. Recently, their presence has been recognized in non-excitable cells such as cancer cells and their overexpression has been shown to be associated with metastatic behavior in a variety of human cancers. The neonatal isoform of the VGSC subtype, Nav1.5 (nNav1.5) is overexpressed in the highly aggressive human breast cancer cell line, MDA-MB-231. The activity of nNav1.5 is known to promote the breast cancer cell invasion in vitro and metastasis in vivo, and its expression in primary mammary tumors has been associated with metastasis and patient death. Metastasis development is responsible for the high mortality of breast cancer and currently there is no treatment available to specifically prevent or inhibit breast cancer metastasis. In the present study, a 3D-QSAR model is used to assist the development of low micromolar small molecule VGSC blockers. Using this model, we have designed, synthesized and evaluated five small molecule compounds as blockers of nNav1.5-dependent inward currents in whole-cell patch-clamp experiments in MDA-MB-231 cells. The most active compound identified from these studies blocked sodium currents by 34.9 ±â€¯6.6% at 1 µM. This compound also inhibited the invasion of MDA-MB-231 cells by 30.3 ±â€¯4.5% at 1 µM concentration without affecting the cell viability. The potent small molecule compounds presented here have the potential to be developed as drugs for breast cancer metastasis treatment.


Assuntos
Antineoplásicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Invasividade Neoplásica/prevenção & controle , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Metástase Neoplásica/prevenção & controle , Relação Quantitativa Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
3.
Nat Commun ; 7: 13648, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917859

RESUMO

The development of metastases largely relies on the capacity of cancer cells to invade extracellular matrices (ECM) using two invasion modes termed 'mesenchymal' and 'amoeboid', with possible transitions between these modes. Here we show that the SCN4B gene, encoding for the ß4 protein, initially characterized as an auxiliary subunit of voltage-gated sodium channels (NaV) in excitable tissues, is expressed in normal epithelial cells and that reduced ß4 protein levels in breast cancer biopsies correlate with high-grade primary and metastatic tumours. In cancer cells, reducing ß4 expression increases RhoA activity, potentiates cell migration and invasiveness, primary tumour growth and metastatic spreading, by promoting the acquisition of an amoeboid-mesenchymal hybrid phenotype. This hyperactivated migration is independent of NaV and is prevented by overexpression of the intracellular C-terminus of ß4. Conversely, SCN4B overexpression reduces cancer cell invasiveness and tumour progression, indicating that SCN4B/ß4 represents a metastasis-suppressor gene.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Genes Supressores de Tumor , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/genética , Animais , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Progressão da Doença , Regulação para Baixo/genética , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ativação do Canal Iônico , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , Subunidades Proteicas/metabolismo , Canais de Sódio/metabolismo , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Peixe-Zebra , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Biochim Biophys Acta ; 1848(10 Pt B): 2493-501, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25922224

RESUMO

Voltage-gated sodium channels are abnormally expressed in tumors, often as neonatal isoforms, while they are not expressed, or only at a low level, in the matching normal tissue. The level of their expression and their activity is related to the aggressiveness of the disease and to the formation of metastases. A vast knowledge on the regulation of their expression and functioning has been accumulated in normal excitable cells. This helped understand their regulation in cancer cells. However, how voltage-gated sodium channels impose a pro-metastatic behavior to cancer cells is much less documented. This aspect will be addressed in the review. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Potenciais da Membrana , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral , Canais de Sódio Disparados por Voltagem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA