Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(17): 9797-9813, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095118

RESUMO

Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.


Assuntos
Aspergillus nidulans , Cromatina , Acetiltransferases/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reguladores , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Esterigmatocistina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Genes (Basel) ; 12(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680865

RESUMO

The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.


Assuntos
Fungos/genética , Histona Desacetilases/genética , Lisina/genética , Acetilação , Antifúngicos/uso terapêutico , Fungos/enzimologia , Fungos/patogenicidade , Humanos , Processamento de Proteína Pós-Traducional/genética
3.
Front Microbiol ; 11: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117098

RESUMO

The fungal class 1 lysine deacetylase (KDAC) RpdA is a promising target for prevention and treatment of invasive fungal infection. RpdA is essential for survival of the most common air-borne mold pathogen Aspergillus fumigatus and the model organism Aspergillus nidulans. In A. nidulans, RpdA depletion induced production of previously unknown small bioactive substances. As known from yeasts and mammals, class 1 KDACs act as components of multimeric protein complexes, which previously was indicated also for A. nidulans. Composition of these complexes, however, remained obscure. In this study, we used tandem affinity purification to characterize different RpdA complexes and their composition in A. nidulans. In addition to known class 1 KDAC interactors, we identified a novel RpdA complex, which was termed RcLS2F. It contains ScrC, previously described as suppressor of the transcription factor CrzA, as well as the uncharacterized protein FscA. We show that recruitment of FscA depends on ScrC and we provide clear evidence that ΔcrzA suppression by ScrC depletion is due to a lack of transcriptional repression caused by loss of the novel RcLS2F complex. Moreover, RcLS2F is essential for sexual development and engaged in an autoregulatory feed-back loop.

4.
Front Microbiol ; 10: 2773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866965

RESUMO

Current suboptimal treatment options of invasive fungal infections and emerging resistance of the corresponding pathogens urge the need for alternative therapy strategies and require the identification of novel antifungal targets. Aspergillus fumigatus is the most common airborne opportunistic mold pathogen causing invasive and often fatal disease. Establishing a novel in vivo conditional gene expression system, we demonstrate that downregulation of the class 1 lysine deacetylase (KDAC) RpdA leads to avirulence of A. fumigatus in a murine model for pulmonary aspergillosis. The xylP promoter used has previously been shown to allow xylose-induced gene expression in different molds. Here, we demonstrate for the first time that this promoter also allows in vivo tuning of A. fumigatus gene activity by supplying xylose in the drinking water of mice. In the absence of xylose, an A. fumigatus strain expressing rpdA under control of the xylP promoter, rpdA xylP , was avirulent and lung histology showed significantly less fungal growth. With xylose, however, rpdA xylP displayed full virulence demonstrating that xylose was taken up by the mouse, transported to the site of fungal infection and caused rpdA induction in vivo. These results demonstrate that (i) RpdA is a promising target for novel antifungal therapies and (ii) the xylP expression system is a powerful new tool for in vivo gene silencing in A. fumigatus.

5.
J Vis Exp ; (147)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31107465

RESUMO

Class 1 histone deacetylases (HDACs) like RpdA have gained importance as potential targets for treatment of fungal infections and for genome mining of fungal secondary metabolites. Inhibitor screening, however, requires purified enzyme activities. Since class 1 deacetylases exert their function as multiprotein complexes, they are usually not active when expressed as single polypeptides in bacteria. Therefore, endogenous complexes need to be isolated, which, when conventional techniques like ion exchange and size exclusion chromatography are applied, is laborious and time consuming. Tandem affinity purification has been developed as a tool to enrich multiprotein complexes from cells and thus turned out to be ideal for the isolation of endogenous enzymes. Here we provide a detailed protocol for the single-step enrichment of active RpdA complexes via the first purification step of C-terminally TAP-tagged RpdA from Aspergillus nidulans. The purified complexes may then be used for the subsequent inhibitor screening applying a deacetylase assay. The protein enrichment together with the enzymatic activity assay can be completed within two days.


Assuntos
Aspergillus nidulans/enzimologia , Cromatografia de Afinidade/métodos , Ensaios Enzimáticos/métodos , Histona Desacetilases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Galinhas , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia
6.
Fungal Genet Biol ; 129: 86-100, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145992

RESUMO

In filamentous fungi, arginine methylation has been implicated in morphogenesis, mycotoxin biosynthesis, pathogenicity, and stress response although the exact role of this posttranslational modification in these processes remains obscure. Here, we present the first genome-wide transcriptome analysis in filamentous fungi that compared expression levels of genes regulated by type I and type II protein arginine methyltransferases (PRMTs). In Aspergillus nidulans, three conserved type I and II PRMTs are present that catalyze asymmetric or symmetric dimethylation of arginines. We generated a double type I mutant (ΔrmtA/rmtB) and a combined type I and type II mutant (ΔrmtB/rmtC) to perform genome-wide comparison of their effects on gene expression, but also to monitor putative overlapping activities and reciprocal regulations of type I and type II PRMTs in Aspergillus. Our study demonstrates, that rmtA and rmtC as type I and type II representatives act together as repressors of proteins that are secreted into the extracellular region as the majority of up-regulated genes are mainly involved in catabolic pathways that constitute the secretome of Aspergillus. In addition to a strong up-regulation of secretory genes we found a significant enrichment of down-regulated genes involved in processes related to oxidation-reduction, transmembrane transport and secondary metabolite biosynthesis. Strikingly, nearly 50% of down-regulated genes in both double mutants correspond to redox reaction/oxidoreductase processes, a remarkable finding in light of our recently observed oxidative stress phenotypes of ΔrmtA and ΔrmtC. Finally, analysis of nuclear and cytoplasmic extracts for mono-methylated proteins revealed the presence of both, common and specific substrates of RmtA and RmtC. Thus, our data indicate that type I and II PRMTs in Aspergillus seem to co-regulate the same biological processes but also specifically affect other pathways in a non-redundant fashion.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Genoma Fúngico , Proteína-Arginina N-Metiltransferases/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Metabolismo Secundário , Fatores de Transcrição/genética
7.
Front Microbiol ; 9: 2212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283426

RESUMO

An outstanding feature of filamentous fungi is their ability to produce a wide variety of small bioactive molecules that contribute to their survival, fitness, and pathogenicity. The vast collection of these so-called secondary metabolites (SMs) includes molecules that play a role in virulence, protect fungi from environmental damage, act as toxins or antibiotics that harm host tissues, or hinder microbial competitors for food sources. Many of these compounds are used in medical treatment; however, biosynthetic genes for the production of these natural products are arranged in compact clusters that are commonly silent under growth conditions routinely used in laboratories. Consequently, a wide arsenal of yet unknown fungal metabolites is waiting to be discovered. Here, we describe the effects of deletion of hosA, one of four classical histone deacetylase (HDAC) genes in Aspergillus nidulans; we show that HosA acts as a major regulator of SMs in Aspergillus with converse regulatory effects depending on the metabolite gene cluster examined. Co-inhibition of all classical enzymes by the pan HDAC inhibitor trichostatin A and the analysis of HDAC double mutants indicate that HosA is able to override known regulatory effects of other HDACs such as the class 2 type enzyme HdaA. Chromatin immunoprecipitation analysis revealed a direct correlation between hosA deletion, the acetylation status of H4 and the regulation of SM cluster genes, whereas H3 hyper-acetylation could not be detected in all the upregulated SM clusters examined. Our data suggest that HosA has inductive effects on SM production in addition to its classical role as a repressor via deacetylation of histones. Moreover, a genome wide transcriptome analysis revealed that in addition to SMs, expression of several other important protein categories such as enzymes of the carbohydrate metabolism or proteins involved in disease, virulence, and defense are significantly affected by the deletion of HosA.

8.
mBio ; 7(6)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803184

RESUMO

Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes. IMPORTANCE: This paper reports on the fungal histone deacetylase RpdA and its importance for the viability of the fungal pathogen Aspergillus fumigatus and other filamentous fungi, a finding that is without precedent in other eukaryotic pathogens. Our data clearly indicate that loss of RpdA activity, as well as depletion of the enzyme in the nucleus, results in lethality of the corresponding Aspergillus mutants. Interestingly, both catalytic activity and proper cellular localization depend on the presence of an acidic motif within the C terminus of RpdA-type enzymes of filamentous fungi that is missing from the homologous proteins of yeasts and higher eukaryotes. The pivotal role, together with the fungus-specific features, turns RpdA into a promising antifungal target of histone deacetylase inhibitors, a class of molecules that is successfully used for the treatment of certain types of cancer. Indeed, some of these inhibitors significantly delay the germination and growth of different filamentous fungi via inhibition of RpdA. Upcoming analyses of clinically approved and novel inhibitors will elucidate their therapeutic potential as new agents for the therapy of invasive fungal infections-an interesting aspect in light of the rising resistance of fungal pathogens to conventional therapies.


Assuntos
Aspergillus fumigatus/enzimologia , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Viabilidade Microbiana , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Aspergillus nidulans/enzimologia , Aspergillus nidulans/fisiologia , Ácidos Hidroxâmicos/farmacologia
9.
Fungal Genet Biol ; 47(6): 551-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20338257

RESUMO

Protein arginine methylation has been implicated in different cellular processes including transcriptional regulation by the modification of histone proteins. Here we demonstrate significant in vitro activities and multifaceted specificities of Aspergillus protein arginine methyltransferases (PRMTs) and we provide evidence for a role of protein methylation in mechanisms of oxidative stress response. We have isolated all three Aspergillus PRMTs from fungal extracts and could assign significant histone specificity to RmtA and RmtC. In addition, both enzymes were able to methylate several non-histone proteins in chromatographic fractions. For endogenous RmtB a remarkable change in its substrate specificity compared to the recombinant enzyme form could be obtained. Phenotypic analysis of mutant strains revealed that growth of DeltarmtA and DeltarmtC strains was significantly reduced under conditions of oxidative stress. Moreover, mycelia of DeltarmtC mutants showed a significant retardation of growth under elevated temperatures.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas Fúngicas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Arginina/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Histonas/química , Histonas/metabolismo , Temperatura Alta , Metilação , Mutação , Estresse Oxidativo , Modificação Traducional de Proteínas , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Estresse Fisiológico , Especificidade por Substrato
10.
Mol Biol Cell ; 21(2): 345-53, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19940017

RESUMO

Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Acetilação , Motivos de Aminoácidos , Sequência de Aminoácidos , Aspergillus fumigatus/enzimologia , Aspergillus nidulans/citologia , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Genótipo , Histonas/metabolismo , Dados de Sequência Molecular , Fenótipo , Relação Estrutura-Atividade , Transcrição Gênica
11.
FEMS Microbiol Rev ; 32(3): 409-39, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18221488

RESUMO

The readout of the genetic information of eukaryotic organisms is significantly regulated by modifications of DNA and chromatin proteins. Chromatin alterations induce genome-wide and local changes in gene expression and affect a variety of processes in response to internal and external signals during growth, differentiation, development, in metabolic processes, diseases, and abiotic and biotic stresses. This review aims at summarizing the roles of histone H1 and the acetylation and methylation of histones in filamentous fungi and links this knowledge to the huge body of data from other systems. Filamentous fungi show a wide range of morphologies and have developed a complex network of genes that enables them to use a great variety of substrates. This fact, together with the possibility of simple and quick genetic manipulation, highlights these organisms as model systems for the investigation of gene regulation. However, little is still known about regulation at the chromatin level in filamentous fungi. Understanding the role of chromatin in transcriptional regulation would be of utmost importance with respect to the impact of filamentous fungi in human diseases and agriculture. The synthesis of compounds (antibiotics, immunosuppressants, toxins, and compounds with adverse effects) is also likely to be regulated at the chromatin level.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Fungos/metabolismo , Histonas/metabolismo , Acetilação , Cromatina/genética , Metilação de DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/enzimologia , Fungos/genética , Regulação Fúngica da Expressão Gênica , Histonas/genética , Humanos , Filogenia , Estrutura Terciária de Proteína
12.
Eukaryot Cell ; 6(9): 1656-64, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17616629

RESUMO

Bioactive small molecules are critical in Aspergillus species during their development and interaction with other organisms. Genes dedicated to their production are encoded in clusters that can be located throughout the genome. We show that deletion of hdaA, encoding an Aspergillus nidulans histone deacetylase (HDAC), causes transcriptional activation of two telomere-proximal gene clusters--and subsequent increased levels of the corresponding molecules (toxin and antibiotic)--but not of a telomere-distal cluster. Introduction of two additional HDAC mutant alleles in a DeltahdaA background had minimal effects on expression of the two HdaA-regulated clusters. Treatment of other fungal genera with HDAC inhibitors resulted in overproduction of several metabolites, suggesting a conserved mechanism of HDAC repression of some secondary-metabolite gene clusters. Chromatin regulation of small-molecule gene clusters may enable filamentous fungi to successfully exploit environmental resources by modifying chemical diversity.


Assuntos
Aspergillus nidulans/química , Aspergillus nidulans/enzimologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Família Multigênica/genética , Alelos , Aspergillus nidulans/genética , Cromatina/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Deleção de Genes , Expressão Gênica , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Família Multigênica/fisiologia , Estresse Oxidativo/genética
13.
Eukaryot Cell ; 4(10): 1736-45, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16215180

RESUMO

Histone deacetylases (HDACs) catalyze the removal of acetyl groups from the epsilon-amino group of distinct lysine residues in the amino-terminal tail of core histones. Since the acetylation status of core histones plays a crucial role in fundamental processes in eukaryotic organisms, such as replication and regulation of transcription, recent research has focused on the enzymes responsible for the acetylation/deacetylation of core histones. Very recently, we showed that HdaA, a member of the Saccharomyces cerevisiae HDA1-type histone deacetylases, is a substantial contributor to total HDAC activity in the filamentous fungus Aspergillus nidulans. Now we demonstrate that deletion of the hdaA gene indeed results in the loss of the main activity peak and in a dramatic reduction of total HDAC activity. In contrast to its orthologs in yeast and higher eukaryotes, HdaA has strong intrinsic activity as a protein monomer when expressed as a recombinant protein in a prokaryotic expression system. In vivo, HdaA is involved in the regulation of enzymes which are of vital importance for the cellular antioxidant response in A. nidulans. Consequently, deltahdaA strains exhibit significantly reduced growth on substrates whose catabolism generates molecules responsible for oxidative stress conditions in the fungus. Our analysis revealed that reduced expression of the fungal catalase CatB is jointly responsible for the significant growth reduction of the hdaA mutant strains.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Estresse Oxidativo , Aspergillus nidulans/citologia , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Catalase/metabolismo , Proteínas Fúngicas/genética , Histona Desacetilases/genética , Peróxido de Hidrogênio/metabolismo , Hifas/metabolismo , Hifas/ultraestrutura , Mutação , Oxidantes/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
14.
Res Microbiol ; 156(1): 35-46, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15636746

RESUMO

The Penicillium chrysogenumantifungal protein PAF is secreted into the supernatant after elimination of a preprosequence. PAF is actively internalized into the hyphae of sensitive molds and provokes growth retardation as well as changes in morphology. Thus far, no information is available on the exact mode of action of PAF, nor on the function of its prosequence in protein activity. Therefore, we sought to investigate the effects of secreted PAF as well as of intracellularly retained pro-PAF and mature PAF on the sensitive ascomycete Aspergillus nidulans, and transformed this model organism by expression vectors containing 5'-sequentially truncated paf-coding sequences under the control of the inducible P. chrysogenum-derived xylanase promoter. Indirect immunofluorescence staining revealed the localization of recombinant PAF predominantly in the hyphal tips of the transformant Xylpaf1 which expressed prepro-PAF, whereas the protein was found to be distributed intracellularly within all segments of hyphae of the transformants Xylpaf2 and Xylpaf3 which expressed pro-PAF and mature PAF, respectively. Growth retardation of Xylpaf1 and Xylpaf3 hyphae was detected by proliferation assays and by light microscopy analysis. Using transmission electron microscopy of ultrathin hyphal sections a marked alteration of the mitochondrial ultrastructure in Xylpaf1 was observed and an elevated amount of carbonylated proteins pointed to severe oxidative stress in this strain. The effects induced by secreted recombinant PAF resembled those evoked by native PAF. The results give evidence that properly folded PAF is a prerequisite for its activity.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Dobramento de Proteína , Aspergillus nidulans/química , Aspergillus nidulans/citologia , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/ultraestrutura , Clonagem Molecular , Proteínas Fúngicas/genética , Hifas/química , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Penicillium , Proteínas Recombinantes/farmacologia , Deleção de Sequência
15.
Biochemistry ; 43(33): 10834-43, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15311944

RESUMO

We have studied enzymes involved in histone arginine methylation in the filamentous fungus Aspergillus nidulans. Three distinct protein arginine methyltransferases (PRMTs) could be identified, which all exhibit intrinsic histone methyltransferase activity when expressed as glutathione S-transferase (GST) fusion proteins. Two of these proteins, termed RmtA (arginine methyltransferase A) and RmtC, reveal significant sequence homology to the well-characterized human proteins PRMT1 and PRMT5, respectively. Native as well as recombinant RmtA is specific for histone H4 with arginine 3 as the methylation site. Furthermore, methylation of histone H4 by recombinant RmtA affects the acetylation by p300/CBP, supporting an interrelation of histone methylation and acetylation in transcriptional regulation. The second methyltransferase, named RmtB, is only distantly related to human/rat PRMT3 and must be considered as a member of a separate group within the PRMT family. The 61 kDa protein, expressed as a GST fusion protein, exhibits a unique substrate specificity in catalyzing the methylation of histones H4, H3, and H2A. Unlike human PRMT3, the Aspergillus enzyme lacks a Zn-finger domain in the amino-terminal part indicating functional differences of RmtB. Furthermore, phylogenetic analysis indicated that RmtB together with other fungal homologues is a member of a separate group within the PRMT proteins. The existence of in vivo arginine methylation on histones as demonstrated by site-specific antibodies and the high level and specificity of PRMTs for individual core histones in A. nidulans suggests an important role of these enzymes for chromatin modulating activities.


Assuntos
Aspergillus nidulans/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metiltransferases/metabolismo , Acetilação , Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/isolamento & purificação , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Metiltransferases/química , Proteínas Metiltransferases , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases , Homologia de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Fatores de Transcrição , Fatores de Transcrição de p300-CBP
16.
Curr Genet ; 44(4): 211-5, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14508603

RESUMO

Aspergillus nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin as an intracellular iron-storage compound. Siderophore biosynthesis involves the enzymatic activity of nonribosomal peptide synthetases (NRPS). NRPS contain 4'-phosphopantetheine as an essential prosthetic group, which is attached by 4'-phosphopantetheinyl transferases. A. nidulans appears to possess at least one gene, npgA, encoding such an enzyme. Using a strain carrying a temperature-sensitive allele, cfwA2, we showed that NpgA is essential for biosynthesis of both the peptide bond-containing ferricrocin and the ester bond-containing triacetylfusarinene C. The cfwA2 strain was found to be iron-starved at the restrictive temperature during iron-replete conditions, consistent with the siderophore system being the major iron-uptake system-as we recently demonstrated. Northern analysis indicated that, in contrast to other genes which are involved in siderophore biosynthesis and uptake, expression of npgA is not controlled by the GATA-transcription factor SreA. It was shown previously that NpgA is required for biosynthesis of penicillin, pigment, and potentially lysine via the alpha-aminoadipate pathway. Supplementation with lysine plus triacetylfusarinine C restored normal growth of the cfwA2 strain at the restrictive temperature, suggesting that the growth defect of the mutant is mainly due to impaired biosynthesis of siderophores and lysine.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas de Bactérias/genética , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Proteínas de Bactérias/metabolismo , Northern Blotting , Cromatografia Líquida de Alta Pressão , Ferricromo/química , Ferro/metabolismo , Proteínas de Membrana Transportadoras/química , Oligonucleotídeos , Proteínas de Saccharomyces cerevisiae/química , Temperatura , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
17.
Nucleic Acids Res ; 31(14): 3971-81, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12853613

RESUMO

Acetylation is the most prominent modification on core histones that strongly affects nuclear processes such as DNA replication, DNA repair and transcription. Enzymes responsible for the dynamic equilibrium of histone acetylation are histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this paper we describe the identification of novel HDACs from the filamentous fungi Aspergillus nidulans and the maize pathogen Cochliobolus carbonum. Two of the enzymes are homologs of Saccharomyces cerevisiae HOS3, an enzyme that has not been identified outside of the established yeast systems until now. One of these homologs, HosB, showed intrinsic HDAC activity and remarkable resistance against HDAC inhibitors like trichostatin A (TSA) when recombinant expressed in an Escherichia coli host system. Phylo genetic analysis revealed that HosB, together with other fungal HOS3 orthologs, is a member of a separate group within the classical HDACs. Immunological investigations with partially purified HDAC activities of Aspergillus showed that all classical enzymes are part of high molecular weight complexes and that a TSA sensitive class 2 HDAC constitutes the major part of total HDAC activity of the fungus. However, further biochemical analysis also revealed an NAD(+)-dependent activity that could be separated from the other activities by different types of chromatography and obviously represents an enzyme of the sirtuin class.


Assuntos
Ascomicetos/genética , Aspergillus nidulans/genética , Histona Desacetilases/genética , Sequência de Aminoácidos , Ascomicetos/enzimologia , Aspergillus nidulans/enzimologia , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Immunoblotting , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Testes de Precipitina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
18.
Eukaryot Cell ; 1(4): 538-47, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12456002

RESUMO

HC-toxin, a cyclic peptide made by the filamentous fungus Cochliobolus carbonum, is an inhibitor of histone deacetylase (HDAC) from many organisms. It was shown earlier that the HDAC activity in crude extracts of C. carbonum is relatively insensitive to HC-toxin as well as to the chemically unrelated HDAC inhibitors trichostatin and D85, whereas the HDAC activity of Aspergillus nidulans is sensitive (G. Brosch et al., Biochemistry 40:12855-12863, 2001). Here we report that HC-toxin-resistant HDAC activity was present in other, but not all, plant-pathogenic Cochliobolus species but not in any of the saprophytic species tested. The HDAC activities of the fungi Alternaria brassicicola and Diheterospora chlamydosporia, which also make HDAC inhibitors, were resistant. The HDAC activities of all C. carbonum isolates tested, except one non-toxin-producing isolate, were resistant. In a cross between a sensitive isolate and a resistant isolate, resistance genetically cosegregated with HC-toxin production. When fractionated by anion-exchange chromatography, extracts of resistant and sensitive isolates and species had two peaks of HDAC activity, one that was fully HC-toxin resistant and a second that was larger and sensitive. The first peak was consistently smaller in extracts of sensitive fungi than in resistant fungi, but the difference appeared to be insufficiently large to explain the differential sensitivities of the crude extracts. Differences in mRNA expression levels of the four known HDAC genes of C. carbonum did not account for the observed differences in HDAC activity profiles. When mixed together, resistant extracts protected extracts of sensitive C. carbonum but did not protect other sensitive Cochlibolus species or Neurospora crassa. Production of this extrinsic protection factor was dependent on TOXE, the transcription factor that regulates the HC-toxin biosynthetic genes. The results suggest that C. carbonum has multiple mechanisms of self-protection against HC-toxin.


Assuntos
Ascomicetos/enzimologia , Inibidores de Histona Desacetilases , Histona Desacetilases/isolamento & purificação , Ascomicetos/genética , Ascomicetos/patogenicidade , DNA Fúngico/genética , Farmacorresistência Fúngica/genética , Inibidores Enzimáticos/farmacologia , Genes Fúngicos , Ligação Genética , Histona Desacetilases/genética , Família Multigênica , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/farmacologia , Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA